Short Name:

EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica

Intellectual Merit: Ice free rock outcrops in the Transantarctic Mountains provide the only accessible windows into the interior of the ice covered Antarctic continent; they are extremely remote and difficult to study. This region also hosts the highest latitude ice-free valley systems on the planet. Based on two interdisciplinary workshops, the Transantarctic region near the Shackleton Glacier has been identified as a high priority site for further studies, with a field camp proposed for the 2015-2016 Antarctic field season. The geology of this region has been studied since the heroic era of Antarctic exploration, in the early 1900s, but geologic mapping has not been updated in more than forty years, and existing maps are at poor resolution (typically 1:250,000). This project would utilize the WorldView-2 multispectral orbital dataset to supplement original geologic mapping efforts near the proposed 2015-2016 Shackleton Glacier camp. The WorldView-2 satellite is the only multispectral orbiting sensor capable of imaging the entirety of the Transantarctic Mountains, and all necessary data are currently available to the Polar Geospatial Center. High-latitude atmospheric correction of multispectral data for geologic investigations has only recently been tested, but has never been applied to WorldView-2 data, and never for observations of this type. Therefore, this research will require technique refinements and methodological developements to accomplish the goals. Atmospheric correction refinements and spectral validation will be made possible by laboratory spectroscopic measurements of rock samples currently stored at the U.S. Polar Rock Repository, at the Ohio State University. This project will result in spectral unit identification and boundary mapping at a factor of four higher resolution (1:62,500) than previous geologic mapping efforts, and more detailed investigations (1:5,123) are possible at resolutions more than a factor of forty-eight improved over previous geologic maps. Validated spectral mapping at these improved resolutions will allow for detailed lithologic, and potentially biologic, mapping using existing satellite imagery. This will greatly enhance planning capabilities, thus maximizing the efficiency of the scientific research and support logistics associated with the Shackleton Glacier deep field camp. Broader impacts: The proposed work will have multiple impacts on the broader scientific community. First, the refinement of existing atmospheric correction methodologies, and the development of new spectral mapping techniques, may substantially improve our ability to remotely investigate geologic surfaces throughout Antarctica. The ability to validate this orbital dataset will be of use to both current and future geologic, environmental, and biologic studies, potentially across the entire continent. The project will yield a specific spectral mapping product (at a scale of 1:62,500) to the scientific community by a targeted date of 01 March 2014, in order to support proposals submitted to the National Science Foundation for the proposed 2015/2016 Shackleton Glacier camp. High-resolution spectral mapping products (up to a maximum resolution of 2 meters per pixel) will also be generated for regions of particular scientific interest. The use of community based resources, such as Polar Geospatial Center (PGC) imagery and U.S. Polar Rock Repository rock samples, will generate new synergistic and collaborative research possibilities within the Antarctic research community. In addition, the lead PI (Salvatore) is an early career scientist who is active in both Antarctic and planetary remote sensing. There are overlaps in the calibration, correction, and validation of remote spectral datasets for Antarctic and planetary applications which can lead to benefits and insights to an early career PI, as well as the two communities.

Map of Earth