OpenSearch

Using the NASA EOSDIS Common Metadata Repository

Collection Search

  • Alaska AVHRR Twice-Monthly Composites

    https://cmr.earthdata.nasa.gov/search/concepts/C1220565954-USGS_LTA.xml
    Description:

    The goal of the Alaska Advanced Very High Resolution Radiometer (AVHRR) project is to compile a time series data set of calibrated, georegistered daily observations and twice-monthly maximum normalized difference vegetation index (NDVI) composites for Alaska's annual growing season (April-October). This data set has applications for environmental monitoring and for assessing impacts of global climate change. An Alaska AVHRR data set is comprised of twice-monthly maximum NDVI composites of daily satellite observations. The NDVI composites contain 10 bands of information, including AVHRR channels 1-5, maximum NDVI, satellite zenith, solar zenith, and relative azimuth. The daily observations, bands 1-9, have been calibrated to reflectance, scaled to byte data, and geometrically registered to the Albers Equal-Area Conic map projection. The 10th band is a pointer to identify the date and scene ID of the source daily observation (scene) for each pixel. The compositing process required each daily overpass to be registered to a common map projection to ensure that from day to day each 1-km pixel represented the exact same ground location. The Albers Equal-Area Conic map projection provides for equal area representation, which enables easy measurement of area throughout the data. Each daily observation for the growing season was registered to a base image using image-to-image correlation. The NDVI data are calculated from the calibrated, geometrically registered daily observations. The NDVI value is the difference between near-infrared (AVHRR Channel 2) and visible (AVHRR Channel 1) reflectance values divided by total measured reflectance. A maximum NDVI compositing process was used on the daily observations. The NDVI is examined pixel by pixel for each observation during the compositing period to determine and retain the maximum value. Often when displaying data covering large areas, such as AVHRR data, it is beneficial to include an overlay of either familiar linework for reflectance or polygon data sets to derive statistical summaries of regions. All of the linework images represent lines in raster format as 1-km cells and the strata are represented as polygons registered to the AVHRR data. The linework and polygon data sets include international boundaries, Alaskan roads with the Trans-Alaska Pipeline, and a raster polygon mask of the State.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 51 -179 70 -116

    USGS_LTA Short Name: AK_AVHRR Version ID: Not provided Unique ID: C1220565954-USGS_LTA

  • AMSU/MSU Lowstratosphere Day/Month Temperature Anomalies and Annual Cycle V6

    https://cmr.earthdata.nasa.gov/search/concepts/C1625128476-GHRC_CLOUD.xml
    Description:

    The AMSU/MSU Lowstratosphere Day/Month Temperature Anomalies and Annual Cycle V6 dataset consists of temperature anomalies and annual cycle temperatures derived from the Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit-A (AMSU-A) radiance data since January 1978. All products are derived for the lower stratosphere. The dataset begins on January 1, 1978 and is still currently ongoing. The data are available in netCDF-4 and ASCII formats.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    GHRC_CLOUD Short Name: msutls Version ID: 6 Unique ID: C1625128476-GHRC_CLOUD

  • AMSU/MSU Lowtroposphere Day/Month Temperature Anomalies and Annual Cycle V6

    https://cmr.earthdata.nasa.gov/search/concepts/C1625128413-GHRC_CLOUD.xml
    Description:

    The AMSU/MSU Lowtroposphere Day/Month Temperature Anomalies and Annual Cycle V6 dataset consists of temperature anomalies and annual cycle temperatures derived from the Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit-A (AMSU-A) radiance data since January 1978. All products are derived for the lower troposphere. The dataset begins on January 1, 1978 and is still currently ongoing. The data are available in netCDF-4 and ASCII formats.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    GHRC_CLOUD Short Name: msutlt Version ID: 6 Unique ID: C1625128413-GHRC_CLOUD

  • AMSU/MSU Midtroposphere Day/Month Temperature Anomalies and Annual Cycle V6

    https://cmr.earthdata.nasa.gov/search/concepts/C1625128464-GHRC_CLOUD.xml
    Description:

    The AMSU/MSU Midtroposphere Day/Month Temperature Anomalies and Annual Cycle V6 dataset consists of temperature anomalies and annual cycle temperatures derived from the Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit-A (AMSU-A) radiance data since January 1978. All products are derived for the mid-troposphere. The dataset begins on January 1, 1978 and is still currently ongoing. The data are available in netCDF-4 and ASCII formats.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    GHRC_CLOUD Short Name: msutmt Version ID: 6 Unique ID: C1625128464-GHRC_CLOUD

  • AMSU/MSU Tropopause Day/Month Temperature Anomalies and Annual Cycle V6

    https://cmr.earthdata.nasa.gov/search/concepts/C1625128218-GHRC_CLOUD.xml
    Description:

    The AMSU/MSU Tropopause Day/Month Temperature Anomalies and Annual Cycle V6 dataset consists of temperature anomalies and annual cycle temperatures derived from the Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit-A (AMSU-A) radiance data since January 1978. All products are derived for the tropopause. The dataset begins on January 1, 1978 and is still currently ongoing. The data are available in netCDF-4 and ASCII formats.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    GHRC_CLOUD Short Name: msuttp Version ID: 6 Unique ID: C1625128218-GHRC_CLOUD

  • AVHRR 1-km Global Land 10-Day Composites

    https://cmr.earthdata.nasa.gov/search/concepts/C1220566288-USGS_LTA.xml
    Description:

    The Advanced Very High Resolution Radiometer (AVHRR) 1-km Global Land 10-Day Composites data set project is a component of the National Aeronautics and Space Administration (NASA) AVHRR Pathfinder Program. The project is a collaborative effort between the National Oceanic and Atmospheric Administration (NOAA), NASA, the U.S. Geological Survey (USGS), the European Space Agency (ESA), Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), and 30 international ground receiving stations. The project represents an international effort to archive and distribute the 1-km AVHRR composites of the entire global land surface to scientific researchers and to the general public. The data set is comprised of a time series of global 10-day normalized difference vegetation index composites. The composites are generated from radiometrically calibrated, atmospherically corrected, and geometrically corrected daily AVHRR observations. The time series begins in April 1992 and continues for specific time periods.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    USGS_LTA Short Name: AVHRR_GLOBAL_10-DAY_COMPOSITES Version ID: Not provided Unique ID: C1220566288-USGS_LTA

  • AVHRR Pathfinder version 5.2 level 3 collated (L3C) global 4km sea surface temperature for 1981-2012

    https://cmr.earthdata.nasa.gov/search/concepts/C1597990340-NOAA_NCEI.xml
    Description:

    The AVHRR Pathfinder Version 5.2 Sea Surface Temperature data set (PFV52) is a collection of global, twice-daily 4km sea surface temperature data produced in a partnership by the NOAA National Oceanographic Data Center and the University of Miami's Rosenstiel School of Marine and Atmospheric Science. PFV52 was computed from data from the AVHRR instruments on board NOAA's polar orbiting satellite series using an entirely modernized system based on SeaDAS. This system incorporates several key changes from Versions 5.0 and 5.1 of Pathfinder, including the use of an entirely new land mask, a modified grid, and the inclusion of sea ice, wind speed, and aerosol ancillary data to support the use of the SST data. Importantly, PFV52 data are provided in netCDF-4 (classic model, with internal compression and chunking) and are nearly 100% compliant with the GHRSST Data Specification Version 2.0 for L3C products. These data deviate from that standard only in that sses_bias, sses_standard_deviation, and sst_dtime variables are empty. PFV52 data were collected through the operational periods of the NOAA-7 through NOAA-19 Polar Operational Environmental Satellites (POES), and are available back to 1981. Data for all years are available as separate NODC accessions.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    NOAA_NCEI Short Name: gov.noaa.nodc.AVHRR_Pathfinder-NODC-L3C-v5.2 Version ID: 5.2 Unique ID: C1597990340-NOAA_NCEI

  • CEOS Cal Val Test Site - Algeria 3 - Pseudo-Invariant Calibration Site (PICS)

    https://cmr.earthdata.nasa.gov/search/concepts/C1220567099-USGS_LTA.xml
    Description:

    On the background of these requirements for sensor calibration, intercalibration and product validation, the subgroup on Calibration and Validation of the Committee on Earth Observing System (CEOS) formulated the following recommendation during the plenary session held in China at the end of 2004, with the goal of setting-up and operating an internet based system to provide sensor data, protocols and guidelines for these purposes: Background: Reference Datasets are required to support the understanding of climate change and quality assure operational services by Earth Observing satellites. The data from different sensors and the resulting synergistic data products require a high level of accuracy that can only be obtained through continuous traceable calibration and validation activities. Requirement: Initiate an activity to document a reference methodology to predict Top of Atmosphere (TOA) radiance for which currently flying and planned wide swath sensors can be intercompared, i.e. define a standard for traceability. Also create and maintain a fully accessible web page containing, on an instrument basis, links to all instrument characteristics needed for intercomparisons as specified above, ideally in a common format. In addition, create and maintain a database (e.g. SADE) of instrument data for specific vicarious calibration sites, including site characteristics, in a common format. Each agency is responsible for providing data for their instruments in this common format. Recommendation : The required activities described above should be supported for an implementation period of two years and a maintenance period over two subsequent years. The CEOS should encourage a member agency to accept the lead role in supporting this activity. CEOS should request all member agencies to support this activity by providing appropriate information and data in a timely manner. Pseudo-Invariant Calibration Sites (PICS): Algeria 3 is one of six CEOS reference Pseudo-Invariant Calibration Sites (PICS) that are CEOS Reference Test Sites. Besides the nominally good site characteristics (temporal stability, uniformity, homogeneity, etc.), these six PICS were selected by also taking into account their heritage and the large number of datasets from multiple instruments that already existed in the EO archives and the long history of characterization performed over these sites. The PICS have high reflectance and are usually made up of sand dunes with climatologically low aerosol loading and practically no vegetation. Consequently, these PICS can be used to evaluate the long-term stability of instrument and facilitate inter-comparison of multiple instruments.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 29.09 5.22 31.36 10.01

    USGS_LTA Short Name: CEOS_CalVal_Test_Sites-Algeria3 Version ID: Not provided Unique ID: C1220567099-USGS_LTA

  • CEOS Cal Val Test Site - Algeria 5 - Pseudo-Invariant Calibration Site (PICS)

    https://cmr.earthdata.nasa.gov/search/concepts/C1220567104-USGS_LTA.xml
    Description:

    On the background of these requirements for sensor calibration, intercalibration and product validation, the subgroup on Calibration and Validation of the Committee on Earth Observing System (CEOS) formulated the following recommendation during the plenary session held in China at the end of 2004, with the goal of setting-up and operating an internet based system to provide sensor data, protocols and guidelines for these purposes: Background: Reference Datasets are required to support the understanding of climate change and quality assure operational services by Earth Observing satellites. The data from different sensors and the resulting synergistic data products require a high level of accuracy that can only be obtained through continuous traceable calibration and validation activities. Requirement: Initiate an activity to document a reference methodology to predict Top of Atmosphere (TOA) radiance for which currently flying and planned wide swath sensors can be intercompared, i.e. define a standard for traceability. Also create and maintain a fully accessible web page containing, on an instrument basis, links to all instrument characteristics needed for intercomparisons as specified above, ideally in a common format. In addition, create and maintain a database (e.g. SADE) of instrument data for specific vicarious calibration sites, including site characteristics, in a common format. Each agency is responsible for providing data for their instruments in this common format. Recommendation : The required activities described above should be supported for an implementation period of two years and a maintenance period over two subsequent years. The CEOS should encourage a member agency to accept the lead role in supporting this activity. CEOS should request all member agencies to support this activity by providing appropriate information and data in a timely manner. Pseudo-Invariant Calibration Sites (PICS): Algeria 5 is one of six CEOS reference Pseudo-Invariant Calibration Sites (PICS) that are CEOS Reference Test Sites. Besides the nominally good site characteristics (temporal stability, uniformity, homogeneity, etc.), these six PICS were selected by also taking into account their heritage and the large number of datasets from multiple instruments that already existed in the EO archives and the long history of characterization performed over these sites. The PICS have high reflectance and are usually made up of sand dunes with climatologically low aerosol loading and practically no vegetation. Consequently, these PICS can be used to evaluate the long-term stability of instrument and facilitate inter-comparison of multiple instruments.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 29.24 -1.32 32.79 4.24

    USGS_LTA Short Name: CEOS_CalVal_Test_Sites-Algeria5 Version ID: Not provided Unique ID: C1220567104-USGS_LTA

  • CEOS Cal Val Test Site - Dome C, Antarctica - Instrumented Site

    https://cmr.earthdata.nasa.gov/search/concepts/C1220566821-USGS_LTA.xml
    Description:

    On the background of these requirements for sensor calibration, intercalibration and product validation, the subgroup on Calibration and Validation of the Committee on Earth Observing System (CEOS) formulated the following recommendation during the plenary session held in China at the end of 2004, with the goal of setting-up and operating an internet based system to provide sensor data, protocols and guidelines for these purposes: Background: Reference Datasets are required to support the understanding of climate change and quality assure operational services by Earth Observing satellites. The data from different sensors and the resulting synergistic data products require a high level of accuracy that can only be obtained through continuous traceable calibration and validation activities. Requirement: Initiate an activity to document a reference methodology to predict Top of Atmosphere (TOA) radiance for which currently flying and planned wide swath sensors can be intercompared, i.e. define a standard for traceability. Also create and maintain a fully accessible web page containing, on an instrument basis, links to all instrument characteristics needed for intercomparisons as specified above, ideally in a common format. In addition, create and maintain a database (e.g. SADE) of instrument data for specific vicarious calibration sites, including site characteristics, in a common format. Each agency is responsible for providing data for their instruments in this common format. Recommendation : The required activities described above should be supported for an implementation period of two years and a maintenance period over two subsequent years. The CEOS should encourage a member agency to accept the lead role in supporting this activity. CEOS should request all member agencies to support this activity by providing appropriate information and data in a timely manner. Instrumented Sites: Dome C, Antarctica is one of eight instrumented sites that are CEOS Reference Test Sites. The CEOS instrumented sites are provisionally being called LANDNET. These instrumented sites are primarily used for field campaigns to obtain radiometric gain, and these sites can serve as a focus for international efforts, facilitating traceability and inter-comparison to evaluate biases of in-flight and future instruments in a harmonized manner.  In the longer-term it is anticipated that these sites will all be fully automated and provide surface and atmospheric measurements to the WWW in an autonomous manner reducing some of the cost of a manned campaign, at present three can operate in this manner.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -76.6 123 -74.5 131.18

    USGS_LTA Short Name: CEOS_CalVal_Test_Site-Dome_C-Antarctica Version ID: Not provided Unique ID: C1220566821-USGS_LTA