OpenSearch

Using the NASA EOSDIS Common Metadata Repository

Collection Search

  • CDDIS_DORIS_data_cycle

    https://cmr.earthdata.nasa.gov/search/concepts/C1000000000-CDDIS.xml
    Description:

    The Doppler Orbitography by Radiopositioning Integrated on Satellite (DORIS) was developed by the Centre National d'Etudes Spatiales (CNES) with cooperation from other French government agencies. The system was developed to provide precise orbit determination and high accuracy location of ground beacons for point positioning. DORIS is a dual-frequency Doppler system that has been included as an experiment on various space missions such as TOPEX/Poseidon, SPOT-2, -3, -4, and -5, Envisat, and Jason satellites. Unlike many other navigation systems, DORIS is based on an uplink device. The receivers are on board the satellite with the transmitters are on the ground. This creates a centralized system in which the complete set of observations is downloaded by the satellite to the ground center, from where they are distributed after editing and processing. An accurate measurment is made of the Doppler shift on radiofrequency signals emitted by the ground beacons and received on the spacecraft.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    CDDIS Short Name: CDDIS_DORIS_data_cycle Version ID: 1 Unique ID: C1000000000-CDDIS

  • CDDIS_DORIS_data_rinex

    https://cmr.earthdata.nasa.gov/search/concepts/C1000000001-CDDIS.xml
    Description:

    The Doppler Orbitography by Radiopositioning Integrated on Satellite (DORIS) was developed by the Centre National d'Etudes Spatiales (CNES) with cooperation from other French government agencies. The system was developed to provide precise orbit determination and high accuracy location of ground beacons for point positioning. DORIS is a dual-frequency Doppler system that has been included as an experiment on various space missions such as TOPEX/Poseidon, SPOT-2, -3, -4, and -5, Envisat, and Jason satellites. Unlike many other navigation systems, DORIS is based on an uplink device. The receivers are on board the satellite with the transmitters are on the ground. This creates a centralized system in which the complete set of observations is downloaded by the satellite to the ground center, from where they are distributed after editing and processing. An accurate measurment is made of the Doppler shift on radiofrequency signals emitted by the ground beacons and received on the spacecraft.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    CDDIS Short Name: CDDIS_DORIS_data_rinex Version ID: 1 Unique ID: C1000000001-CDDIS

  • CDDIS_DORIS_products_positions

    https://cmr.earthdata.nasa.gov/search/concepts/C1000000020-CDDIS.xml
    Description:

    Station position and velocity solutions (weekly and cumulative) in Software INdependent EXchange (SINEX) format derived from analysis of Doppler Orbitography by Radiopositioning Integrated on Satellite (DORIS) data. The solutions include daily values of Earth Orientation Parameters (EOPs). These products are the generated by analysis centers in support of the International DORIS Service (IDS). Time series of station coordinate solutions in Station Coordinate Difference (STCD) are also generated by the IDS analysis centers. Weekly solutions represent the IDS contribution to the International Terrestrial Reference Frame (ITRF) determination.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    CDDIS Short Name: CDDIS_DORIS_products_positions Version ID: 1 Unique ID: C1000000020-CDDIS

  • CDDIS_DORIS_products_stcd

    https://cmr.earthdata.nasa.gov/search/concepts/C1000000080-CDDIS.xml
    Description:

    Station position time series solutions in DORIS Station Coordinate Difference (STCD) format derived from analysis of Doppler Orbitography by Radiopositioning Integrated on Satellite (DORIS) data. These products are the generated by analysis centers in support of the International DORIS Service (IDS).

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    CDDIS Short Name: CDDIS_DORIS_products_stcd Version ID: 1 Unique ID: C1000000080-CDDIS

  • CDDIS_SLR_data

    https://cmr.earthdata.nasa.gov/search/concepts/C1000000041-CDDIS.xml
    Description:

    In Satellite Laser Ranging (SLR), a short pulse of coherent light generated by a laser (Light Amplification by Stimulated Emission of Radiation) is transmitted in a narrow beam to illuminate corner cube retroreflectors on the satellite. The return signal, typically a few photons, is collected by a telescope and the time-of-flight is measured. Using information about the satellite's orbit, the time-of-flight, and the speed of light, the location of the ranging station can be determined. Similar data acquired by another station, many kilometers distant from the first, or on a different continent, can be used to determine the distance between stations to precisions of centimeters or better. Repetitive measurements over months and years yield the change in distance, or the motion of the Earth's crust.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    CDDIS Short Name: CDDIS_SLR_data Version ID: 1 Unique ID: C1000000041-CDDIS

  • CDDIS_SLR_predictions

    https://cmr.earthdata.nasa.gov/search/concepts/C1000000025-CDDIS.xml
    Description:

    Predicted satellite orbits for Satellite Laser Ranging (SLR) tracking of satellites equipped with corner cube retroreflectors. SLR stations download these prediction files and coordinate tracking schedules for satellite acquisition. The predicted orbit files typically contain orbit information for multiple days and are issued on a daily or sub-daily basis.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    CDDIS Short Name: CDDIS_SLR_predictions Version ID: 1 Unique ID: C1000000025-CDDIS