OpenSearch

Using the NASA EOSDIS Common Metadata Repository

Collection Search

  • ABI/GOES-16 Dark Target Aerosol 10-Min L2 Full Disk 10 km

    https://cmr.earthdata.nasa.gov/search/concepts/C2859273114-LAADS.xml
    Description:

    The ABI/GOES-16 Dark Target Aerosol 10-Min L2 Full Disk 10 km product, short-name XAERDT_L2_ABI_G16 is provided at 10-km spatial resolution (at-nadir) and a 10-minute full-disk cadence that typically yields about 144 granules over the daylit hours of a 24-hour period. The Geostationary Operational Environmental Satellite – GOES-16 has been serving in the operational GOES-East position (near -75°W) since December 18, 2017. The GOES-16/ABI collection record spans from January 2019 through December 2022. The XAERDT_L2_ABI_G16 product is a part of the Geostationary Earth Orbit (GEO)–Low-Earth Orbit (LEO) Dark Target Aerosol project under NASA’s Making Earth System Data Records for Use in Research Environments (MEaSUREs) program, led by Robert Levy, uses a special version of the MODIS Dark Target (DT) aerosol retrieval algorithm to produce Aerosol Optical Depth (AOD) and other aerosol parameters derived independently from seven sensor/platform combinations, where 3 are in GEO and 4 are in LEO. The 3 GEO sensors include Advanced Baseline Imagers (ABI) on both GOES-16 (GOES-East) and GOES-17 (GOES-West), and Advanced Himawari Imager (AHI) on Himawari-8. The 4 LEO sensors include MODIS on both Terra and Aqua, and VIIRS on both Suomi-NPP and NOAA-20. Adding the LEO sensors reinforces a major goal of this project, which is to render a consistent science maturity level across DT aerosol products derived from both types and sources of orbital satellites. The XAERDT_L2_ABI_G16 product, in netCDF4 format, contains 45 Science Data Set (SDS) layers that include 8 geolocation and 37 geophysical SDSs. For more information consult LAADS product description page at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/XAERDT_L2_ABI_G16 Or, Dark Target aerosol team Page at: https://darktarget.gsfc.nasa.gov/

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    LAADS Short Name: XAERDT_L2_ABI_G16 Version ID: 1 Unique ID: C2859273114-LAADS

  • ACTIVATE GOES-16 Supplementary Data Products

    https://cmr.earthdata.nasa.gov/search/concepts/C2647017088-LARC_ASDC.xml
    Description:

    ACTIVATE_Satellite_Data_1 is the GOES-16 satellite data supporting the ACTIVATE suborbital campaign. ACTIVATE was a 5-year NASA Earth-Venture Sub-Orbital (EVS-3) field campaign. Marine boundary layer clouds play a critical role in Earth’s energy balance and water cycle. These clouds cover more than 45% of the ocean surface and exert a net cooling effect. The Aerosol Cloud meTeorology Interactions oVer the western Atlantic Experiment (ACTIVATE) project was a five-year project that provides important globally-relevant data about changes in marine boundary layer cloud systems, atmospheric aerosols and multiple feedbacks that warm or cool the climate. ACTIVATE studied the atmosphere over the western North Atlantic and sampled its broad range of aerosol, cloud and meteorological conditions using two aircraft, the UC-12 King Air and HU-25 Falcon. The UC-12 King Air was primarily used for remote sensing measurements while the HU-25 Falcon will contain a comprehensive instrument payload for detailed in-situ measurements of aerosol, cloud properties, and atmospheric state. A few trace gas measurements were also onboard the HU-25 Falcon for the measurements of pollution traces, which will contribute to airmass classification analysis. A total of 150 coordinated flights over the western North Atlantic occurred through 6 deployments from 2020-2022. The ACTIVATE science observing strategy intensively targets the shallow cumulus cloud regime and aims to collect sufficient statistics over a broad range of aerosol and weather conditions which enables robust characterization of aerosol-cloud-meteorology interactions. This strategy was implemented by two nominal flight patterns: Statistical Survey and Process Study. The statistical survey pattern involves close coordination between the remote sensing and in-situ aircraft to conduct near coincident sampling at and below cloud base as well as above and within cloud top. The process study pattern involves extensive vertical profiling to characterize the target cloud and surrounding aerosol and meteorological conditions.

    Links: Temporal Extent: Spatial Extent:
    Polygon: 0 -95 0 -25 60 -25 60 -95 0 -95

    LARC_ASDC Short Name: ACTIVATE-Satellite Version ID: 1 Unique ID: C2647017088-LARC_ASDC

  • Climatology for NOAA Coral Reef Watch (CRW) Daily Global 5km Satellite Coral Bleaching Heat Stress Monitoring Product Suite Version 3.1 for 1985-01-01 to 2012-12-31 (NCEI Accession 0185742)

    https://cmr.earthdata.nasa.gov/search/concepts/C2089379091-NOAA_NCEI.xml
    Description:

    This package contains a set of 12 monthly mean (MM) climatologies, one for each calendar month, and the maximum monthly mean (MMM) climatology. Each climatology has global coverage at 0.05-degree (5km) spatial resolution. The climatologies were derived from NOAA Coral Reef Watch's (CRW) CoralTemp Version 1.0 product and are based on the 1985-2012 time period of the CoralTemp data. They are used in deriving CRW's Daily Global 5km Satellite Coral Bleaching Heat Stress Monitoring Product Suite Version 3.1. MMs are used to derive the SST Anomaly product, and the MMM is used to derive CRW's Coral Bleaching HotSpot, Degree Heating Week, and Bleaching Alert Area products.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    NOAA_NCEI Short Name: gov.noaa.nodc:0185742 Version ID: Not Applicable Unique ID: C2089379091-NOAA_NCEI

  • Dynamics and Chemistry of the Summer Stratosphere Model Output

    https://cmr.earthdata.nasa.gov/search/concepts/C2276336408-LARC_ASDC.xml
    Description:

    DCOTSS-Model-Output features numerical model output for the Dynamics and Chemistry of the Summer Stratosphere sub-orbital campaign. Featured in this product are trajectory calculations, convection-permitting model simulations, and chemistry model output. Air parcel trajectories are computed using the TRAJ3D trajectory model. Two types of trajectory products are created: flight trajectories and overshoot trajectories. Flight trajectories will be initialized every second along each Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) flight track and run backwards for up to 10 days. Overshoot trajectories will be initialized in overshoot volumes identified from both GridRad radar and GOES satellite data every 10 minutes and run forward for up to 5 days. Convection allowing model simulations are carried out using the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem). These will aid in the evaluation of aircraft observations and evaluate the ability of numerical models to represent overshooting convection and transport. Photodissociation frequencies (J values) will also be computed using a radiative transfer model of the UV and Visible (UV/Vis) spectral regions. Data collection for this product is ongoing and currently only features the first deployment. Each summer the North American Monsoon Anticyclone (NAMA) dominates the circulation of the North-Western Hemisphere and acts to partially confine and isolate air from the surrounding atmosphere. Strong convective storms in the NAMA regularly reach altitudes deep into the lower stratosphere, with some ascending above 20 km. These storms carry water and pollutants from the troposphere into the otherwise very dry stratosphere, where they can have a significant impact on radiative and chemical processes, potentially including destruction of stratospheric ozone. The DCOTSS field campaign is a NASA Earth Venture Suborbital research project aimed at investigating these thunderstorms. DCOTSS utilizes NASA’s ER-2 aircraft and conducted two ~8-week science deployments based out of Salina, KS spanning early to late summer.

    Links: Temporal Extent: Spatial Extent:
    Polygon: -90 -180 -90 180 90 180 90 -180 -90 -180

    LARC_ASDC Short Name: DCOTSS-Model-Output Version ID: 1 Unique ID: C2276336408-LARC_ASDC

  • Dynamics and Chemistry of the Summer Stratosphere Radar and Satellite (Remote Sensing) Data Products

    https://cmr.earthdata.nasa.gov/search/concepts/C2276362394-LARC_ASDC.xml
    Description:

    DCOTSS-Radar-Satellite-Data feature the radar and satellite data products for the Dynamics and Chemistry of the Summer Stratosphere sub-orbital campaign. Featured in this product are NEXRAD WSR-88D radar products and GOES-16 and GOES-17 geostationary satellite imagery and derived products. NEXRAD GridRad data were produced at a 10-minute frequency across the contiguous United States to support forecasting and flight planning activities. GridRad data also include volumes of radar reflectivity at horizontal polarization and radial velocity spectrum width, which were primarily used to identify tropopause-overshooting convection. Identified GridRad overshoots, which rely upon ERA5 tropopause heights, are included in separate daily files. Also included are GOES-16 and GOES-17 satellite products. Tropopause-overshooting convection is also identified using GOES visible and infrared geostationary satellite imagery. These products include derived cloud top altitude, convective overshoot probability, and visible texture rating product and are produced in 10-minute intervals. The product domain extends over North America and encompasses most of Mexico and Canada. The satellite overshoot products complement the GridRad products and enable an understanding of overshooting that occurs outside the NEXRAD network. Data collection for this product is ongoing and currently only features the first deployment. Each summer the North American Monsoon Anticyclone (NAMA) dominates the circulation of the North-Western Hemisphere and acts to partially confine and isolate air from the surrounding atmosphere. Strong convective storms in the NAMA regularly reach altitudes deep into the lower stratosphere, with some ascending above 20 km. These storms carry water and pollutants from the troposphere into the otherwise very dry stratosphere, where they can have a significant impact on radiative and chemical processes, potentially including destruction of stratospheric ozone. The Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) field campaign is a NASA Earth Venture Suborbital research project aimed at investigating these thunderstorms. DCOTSS utilizes NASA’s ER-2 aircraft and conducted two ~8-week science deployments based out of Salina, KS spanning early to late summer.

    Links: Temporal Extent: Spatial Extent:
    Polygon: 10 -135 10 -60 55 -60 55 -135 10 -135

    LARC_ASDC Short Name: DCOTSS-Radar-Satellite-Data Version ID: 1 Unique ID: C2276362394-LARC_ASDC

  • FIREX-AQ Satellite And Related Ancillary Data

    https://cmr.earthdata.nasa.gov/search/concepts/C2163554173-LARC_ASDC.xml
    Description:

    FIREXAQ_Satellite_Data are supplementary satellite and related ancillary data collected during FIREX-AQ. This product includes data from the VIIRS, GOES-16, and GOES-17 satellites. Data collection for this product is complete. Completed during summer 2019, FIREX-AQ utilized a combination of instrumented airplanes, satellites, and ground-based instrumentation. Detailed fire plume sampling was carried out by the NASA DC-8 aircraft, which had a comprehensive instrument payload capable of measuring over 200 trace gas species, as well as aerosol microphysical, optical, and chemical properties. The DC-8 aircraft completed 23 science flights, including 15 flights from Boise, Idaho and 8 flights from Salina, Kansas. NASA’s ER-2 completed 11 flights, partially in support of the FIREX-AQ effort. The ER-2 payload was made up of 8 satellite analog instruments and provided critical fire information, including fire temperature, fire plume heights, and vegetation/soil albedo information. NOAA provided the NOAA-CHEM Twin Otter and the NOAA-MET Twin Otter aircraft to measure chemical processing in the lofted plumes of Western wildfires. The NOAA-CHEM Twin Otter focused on nighttime plume chemistry, from which data is archived at the NASA Atmospheric Science Data Center (ASDC). The NOAA-MET Twin Otter collected measurements of air movements at fire boundaries with the goal of understanding the local weather impacts of fires and the movement patterns of fires. NOAA-MET Twin Otter data will be archived at the ASDC in the future. Additionally, a ground-based station in McCall, Idaho and several mobile laboratories provided in-situ measurements of aerosol microphysical and optical properties, aerosol chemical compositions, and trace gas species. The Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign was a NOAA/NASA interagency intensive study of North American fires to gain an understanding on the integrated impact of the fire emissions on the tropospheric chemistry and composition and to assess the satellite’s capability for detecting fires and estimating fire emissions. The overarching goal of FIREX-AQ was to provide measurements of trace gas and aerosol emissions for wildfires and prescribed fires in great detail, relate them to fuel and fire conditions at the point of emission, characterize the conditions relating to plume rise, and follow plumes downwind to understand chemical transformation and air quality impacts. Data collection is complete.

    Links: Temporal Extent: Spatial Extent:
    Polygon: 10 -136 10 -74 65 -74 65 -136 10 -136

    LARC_ASDC Short Name: FIREXAQ_Satellite_Data Version ID: 2 Unique ID: C2163554173-LARC_ASDC

  • Geostationary Lightning Mapper (GLM) Cluster Integrity, Exception Resolution, and Reclustering Algorithm (CIERRA)

    https://cmr.earthdata.nasa.gov/search/concepts/C3160666934-GHRC_DAAC.xml
    Description:

    The Geostationary Lightning Mapper (GLM) Cluster Integrity, Exception Resolution, and Reclustering Algorithm (CIERRA) dataset consists of a hierarchy of earth-located lightning radiant energy measures including events, groups, series, flashes, and areas. The GLM CIERRA data addresses the artificial flash termination by the GLM ground system by recombining split flashes and filtering out more non-lightning noise. This provides researchers with a powerful tool to better investigate convective storm and lightning activity with more accurate observations as well as better incorporate spatial extent observations that can be used for aviation meteorology, lightning safety, and other studies. These data are available from January 12, 2017, through March 31, 2023, in netCDF-4 format.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -57.312 -180 57.267 180

    GHRC_DAAC Short Name: glmcierra Version ID: 1 Unique ID: C3160666934-GHRC_DAAC

  • GHRSST L3C hourly America Region sub-skin Sea Surface Temperature v1.0 from ABI on GOES16 produced by OSISAF

    https://cmr.earthdata.nasa.gov/search/concepts/C2036877806-POCLOUD.xml
    Description:

    The data is regional and part of the Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset covering the America Region based on retrievals from the Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-16 (GOES-16). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near real time from GOES-16 in the Eastern position. GOES-16 Imager level 1 data are acquired at Météo-France/Centre de Météorologie Spatiale (CMS) through the EUMETSAT/EUMETCast system. The GOES-16 ABI enables daytime SST calculations (whereas, previously, GOES East SST was restricted to nighttime conditions). The L3C SST is derived from a three-band (centered at 8.4, 10.3, and 12.3 um) algorithm. The ABI split-window configuration features three bands instead of the two found in heritage sensors (GOES-13). The 8.5-um is used in conjunction with the 10.3-um and 12.3-um bands for improved thin cirrus detection as well as for better atmospheric moisture correction in relatively dry atmospheres. Atmospheric profiles of water vapor and temperature from a numerical weather prediction model, together with a radiative transfer model, are used to correct the multispectral algorithm for regional and seasonal biases due to changing atmospheric conditions. Each 10-minute observation interval is processed at full satellite resolution. The operational products are then produced by remapping over a 0.05-degree regular grid (60S-60N and 135W-15W) SST fields obtained by aggregating the available10-minute SST data into hourly files-hour time, with priority being given to the value closest in time to the product nominal hour. The product format is compliant with the GHRSST Data Specification (GDS) version 2.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -60 -135 60 -15

    POCLOUD Short Name: GOES16-SST-OSISAF-L3C-v1.0 Version ID: 1.0 Unique ID: C2036877806-POCLOUD

  • GHRSST L3C OSISAF SSTskin dataset v1.0 from GOES16 ABI in East position (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C2213640438-GHRSSTCWIC.xml
    Description:

    The data is regional and part of the High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset covering the America Region (AMERICAS) based on retrievals from the Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-16 (GOES-16). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near real time from GOES-16 in the Eastern position. GOES-16 Imager level 1 data are acquired at Meteo-France/Centre de Meteorologie Spatiale (CMS) through the EUMETSAT/EUMETCAST system. The new GOES-East platform (GOES-16) enables daytime SST calculations (whereas, previously, GOES East SST was restricted to nighttime conditions). The GOES-16 SST is derived from three-bands (centered at 8.4, 10.3, and 12.3 um) algorithm. The ABI split-window configuration features three bands instead of the two found in heritage sensors. This offers additional potential but also may present a challenge if the two end bands centered at 10.3 and 12.3 um are pushed too far in the absorption lines. The 8.5-um is used in conjunction with the 10.3-um and 12.3-um bands for improved thin cirrus detection as well as for better atmospheric moisture correction in relatively dry atmospheres. Atmospheric profiles of water vapor and temperature from a numerical weather prediction model, together with a radiative transfer model, are used to correct the multispectral algorithm for regional and seasonal biases due to changing atmospheric conditions. Each 30-minute observation interval is processed at full satellite resolution. The operational products are then produced by remapping over a 0.05-degree regular grid (60S-60N and 135W-15W) SST fields obtained by aggregating 30-minute SST data available in one-hour time, and the priority being given to the value the closest in time to the product nominal hour. The product format is compliant with the GHRSST Data Specification (GDS) version 2.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -60 -135 60 -15

    GHRSSTCWIC Short Name: gov.noaa.nodc:GHRSST-GOES16-OSISAF-L3C Version ID: 1 Unique ID: C2213640438-GHRSSTCWIC

  • GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    https://cmr.earthdata.nasa.gov/search/concepts/C2213640160-GHRSSTCWIC.xml
    Description:

    A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean group using a multi-scale two-dimensional variational (MS-2DVAR) blending algorithm on a global 0.009 degree grid. This Global 1 km SST (G1SST) analysis uses satellite data from sensors that include the Advanced Very High Resolution Radiometer (AVHRR), the Advanced Along Track Scanning Radiometer (AATSR), the Spinning Enhanced Visible and Infrared Imager (SEVIRI), the Advanced Microwave Scanning Radiometer-EOS (AMSRE), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Geostationary Operational Environmental Satellite (GOES) Imager, the Multi-Functional Transport Satellite 1R (MTSAT-1R) radiometer, and in situ data from drifting and moored buoys.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -80 -180 80 180

    GHRSSTCWIC Short Name: gov.noaa.nodc:GHRSST-JPL_OUROCEAN-L4UHfnd-GLOB-G1SST Version ID: 1 Unique ID: C2213640160-GHRSSTCWIC