OpenSearch

Using the NASA EOSDIS Common Metadata Repository

Collection Search

  • GHRSST L3C OSISAF SSTskin dataset v1.0 from GOES16 ABI in East position (GDS V2) (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C1597928304-NOAA_NCEI.xml
    Description:

    The data is regional and part of the High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset covering the America Region (AMERICAS) based on retrievals from the Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-16 (GOES-16). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near real time from GOES-16 in the Eastern position. GOES-16 Imager level 1 data are acquired at Meteo-France/Centre de Meteorologie Spatiale (CMS) through the EUMETSAT/EUMETCAST system. The new GOES-East platform (GOES-16) enables daytime SST calculations (whereas, previously, GOES East SST was restricted to nighttime conditions). The GOES-16 SST is derived from three-bands (centered at 8.4, 10.3, and 12.3 um) algorithm. The ABI split-window configuration features three bands instead of the two found in heritage sensors. This offers additional potential but also may present a challenge if the two end bands centered at 10.3 and 12.3 um are pushed too far in the absorption lines. The 8.5-um is used in conjunction with the 10.3-um and 12.3-um bands for improved thin cirrus detection as well as for better atmospheric moisture correction in relatively dry atmospheres. Atmospheric profiles of water vapor and temperature from a numerical weather prediction model, together with a radiative transfer model, are used to correct the multispectral algorithm for regional and seasonal biases due to changing atmospheric conditions. Each 30-minute observation interval is processed at full satellite resolution. The operational products are then produced by remapping over a 0.05-degree regular grid (60S-60N and 135W-15W) SST fields obtained by aggregating 30-minute SST data available in one-hour time, and the priority being given to the value the closest in time to the product nominal hour. The product format is compliant with the GHRSST Data Specification (GDS) version 2.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -60 -135 60 -15

    NOAA_NCEI Short Name: gov.noaa.nodc:GHRSST-GOES16-OSISAF-L3C Version ID: 1 Unique ID: C1597928304-NOAA_NCEI

  • GHRSST Level 3C sub-skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES 13) Imager in East position (GDS V2) produced by OSI SAF (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C1597928302-NOAA_NCEI.xml
    Description:

    A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset for the America Region (AMERICAS) based on retrievals from the GOES-13 Imager on board GOES-13 satellite. The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near real time from GOES 13 in East position. GOES 13 imager level 1 data are acquired at Meteo- France/Centre de Meteorologie Spatiale (CMS) through the EUMETSAT/EUMETCAST system. SST is retrieved from the GOES 13 infrared channels (3.9 and 10.8 micrometer) using a multispectral algorithm. Due to the lack of 12 micrometer channel in the GOES 13 imager, SST retrieval is not possible in daytime conditions. Atmospheric profiles of water vapor and temperature from a numerical weather prediction model, together with a radiatiave transfer model, are used to correct the multispectral algorithm for regional and seasonal biases due to changing atmospheric conditions. Every 30 minutes slot is processed at full satellite resolution. The operational products are then produced by remapping over a 0.05 degree regular grid (60S-60N and 135W-15W) SST fields obtained by aggregating 30 minute SST data available in one hour time, and the priority being given to the value the closest in time to the product nominal hour. The product format is compliant with the GHRSST Data Specification (GDS) version 2.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -60 135 60 -15

    NOAA_NCEI Short Name: gov.noaa.nodc:GHRSST-GOES13-OSISAF-L3C Version ID: 1 Unique ID: C1597928302-NOAA_NCEI

  • GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis

    https://cmr.earthdata.nasa.gov/search/concepts/C1650311564-PODAAC.xml
    Description:

    A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean group using a multi-scale two-dimensional variational (MS-2DVAR) blending algorithm on a global 0.009 degree grid. This Global 1 km SST (G1SST) analysis uses satellite data from sensors that include the Advanced Very High Resolution Radiometer (AVHRR), the Advanced Along Track Scanning Radiometer (AATSR), the Spinning Enhanced Visible and Infrared Imager (SEVIRI), the Advanced Microwave Scanning Radiometer-EOS (AMSRE), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Geostationary Operational Environmental Satellite (GOES) Imager, the Multi-Functional Transport Satellite 1R (MTSAT-1R) radiometer, and in situ data from drifting and moored buoys.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -80 -180 80 180

    PODAAC Short Name: JPL_OUROCEAN-L4UHfnd-GLOB-G1SST Version ID: 1 Unique ID: C1650311564-PODAAC

  • GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    https://cmr.earthdata.nasa.gov/search/concepts/C1597990361-NOAA_NCEI.xml
    Description:

    A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean group using a multi-scale two-dimensional variational (MS-2DVAR) blending algorithm on a global 0.009 degree grid. This Global 1 km SST (G1SST) analysis uses satellite data from sensors that include the Advanced Very High Resolution Radiometer (AVHRR), the Advanced Along Track Scanning Radiometer (AATSR), the Spinning Enhanced Visible and Infrared Imager (SEVIRI), the Advanced Microwave Scanning Radiometer-EOS (AMSRE), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Geostationary Operational Environmental Satellite (GOES) Imager, the Multi-Functional Transport Satellite 1R (MTSAT-1R) radiometer, and in situ data from drifting and moored buoys.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -80 -180 80 180

    NOAA_NCEI Short Name: gov.noaa.nodc.GHRSST-JPL_OUROCEAN-L4UHfnd-GLOB-G1SST Version ID: 1 Unique ID: C1597990361-NOAA_NCEI

  • GHRSST Level 4 OSPO Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C1597990346-NOAA_NCEI.xml
    Description:

    A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of Satellite and Product Operations (OSPO) using optimal interpolation (OI) on a global 0.054 degree grid. The Geo-Polar Blended Sea Surface Temperature (SST) Analysis combines multi-satellite retrievals of sea surface temperature into a single analysis of SST. This analysis uses both daytime and nighttime data from sensors that include the Advanced Very High Resolution Radiometer (AVHRR), the Visible Infrared Imager Radiometer Suite (VIIRS), the Geostationary Operational Environmental Satellite (GOES) imager, the Japanese Advanced Meteorological Imager (JAMI) and in situ data from ships, drifting and moored buoys. This analysis was specifically produced to be used as a lower boundary condition in Numerical Weather Prediction (NWP) models. This dataset adheres to the GHRSST Data Processing Specification (GDS) version 2 format specifications.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    NOAA_NCEI Short Name: gov.noaa.nodc.GHRSST-Geo_Polar_Blended-OSPO-L4-GLOB Version ID: netCDF-4 Unique ID: C1597990346-NOAA_NCEI

  • GHRSST Level 4 OSPO Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C1657544973-PODAAC.xml
    Description:

    A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of Satellite and Product Operations (OSPO) using optimal interpolation (OI) on a global 0.054 degree grid. The Geo-Polar Blended Sea Surface Temperature (SST) Analysis combines multi-satellite retrievals of sea surface temperature into a single analysis of SST. This analysis uses both daytime and nighttime data from sensors that include the Advanced Very High Resolution Radiometer (AVHRR), the Visible Infrared Imager Radiometer Suite (VIIRS), the Geostationary Operational Environmental Satellite (GOES) imager, the Japanese Advanced Meteorological Imager (JAMI) and in situ data from ships, drifting and moored buoys. This analysis was specifically produced to be used as a lower boundary condition in Numerical Weather Prediction (NWP) models. This dataset adheres to the GHRSST Data Processing Specification (GDS) version 2 format specifications.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    PODAAC Short Name: Geo_Polar_Blended-OSPO-L4-GLOB-v1.0 Version ID: 1.0 Unique ID: C1657544973-PODAAC

  • GHRSST Level 4 OSPO Global Nighttime Foundation Sea Surface Temperature Analysis (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C1597990351-NOAA_NCEI.xml
    Description:

    A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of Satellite and Product Operations (OSPO) using optimal interpolation (OI) on a global 0.054 degree grid. The Geo-Polar Blended Sea Surface Temperature (SST) Analysis combines multi-satellite retrievals of sea surface temperature into a single analysis of SST. This analysis includes only nighttime data from sensors that include the Advanced Very High Resolution Radiometer (AVHRR), the Visible Infrared Imager Radiometer Suite (VIIRS), the Geostationary Operational Environmental Satellite (GOES) imager, the Japanese Advanced Meteorological Imager (JAMI) and in situ data from ships, drifting and moored buoys. This analysis was specifically produced to be used as a lower boundary condition in Numerical Weather Prediction (NWP) models. This dataset adheres to the GHRSST Data Processing Specification (GDS) version 2 format specifications.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    NOAA_NCEI Short Name: gov.noaa.nodc.GHRSST-Geo_Polar_Blended_Night-OSPO-L4-GLOB Version ID: 2 Unique ID: C1597990351-NOAA_NCEI

  • GHRSST Level 4 OSPO Global Nighttime Foundation Sea Surface Temperature Analysis (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C1657544629-PODAAC.xml
    Description:

    A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of Satellite and Product Operations (OSPO) using optimal interpolation (OI) on a global 0.054 degree grid. The Geo-Polar Blended Sea Surface Temperature (SST) Analysis combines multi-satellite retrievals of sea surface temperature into a single analysis of SST. This analysis includes only nighttime data from sensors that include the Advanced Very High Resolution Radiometer (AVHRR), the Visible Infrared Imager Radiometer Suite (VIIRS), the Geostationary Operational Environmental Satellite (GOES) imager, the Japanese Advanced Meteorological Imager (JAMI) and in situ data from ships, drifting and moored buoys. This analysis was specifically produced to be used as a lower boundary condition in Numerical Weather Prediction (NWP) models. This dataset adheres to the GHRSST Data Processing Specification (GDS) version 2 format specifications.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    PODAAC Short Name: Geo_Polar_Blended_Night-OSPO-L4-GLOB-v1.0 Version ID: 1.0 Unique ID: C1657544629-PODAAC

  • GHRSST Level 4 OSTIA Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C1652972902-PODAAC.xml
    Description:

    A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the UK Met Office using optimal interpolation (OI) on a global 0.054 degree grid. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) analysis uses satellite data from sensors that include the Advanced Very High Resolution Radiometer (AVHRR), the Spinning Enhanced Visible and Infrared Imager (SEVIRI), the Geostationary Operational Environmental Satellite (GOES) imager, the Infrared Atmospheric Sounding Interferometer (IASI), the Tropical Rainfall Measuring Mission Microwave Imager (TMI) and in situ data from ships, drifting and moored buoys. This analysis was specifically produced to be used as a lower boundary condition in Numerical Weather Prediction (NWP) models. This dataset adheres to the GHRSST Data Processing Specification (GDS) version 2 format specifications.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    PODAAC Short Name: OSTIA-UKMO-L4-GLOB-v2.0 Version ID: 2.0 Unique ID: C1652972902-PODAAC

  • GHRSST NOAA/STAR GOES-16 ABI L2P America Region SST v2.70 dataset in GDS2

    https://cmr.earthdata.nasa.gov/search/concepts/C1653649483-PODAAC.xml
    Description:

    GOES-16 (G16) is the first satellite in the US NOAA third generation of Geostationary Operational Environmental Satellites (GOES), a.k.a. GOES-R series (which will also include -S, -T, and -U). G16 was launched on 19 Nov 2016 and initially placed in an interim position at 89.5-deg W, between GOES-East and -West. Upon completion of Cal/Val in Dec 2018, it was moved to its permanent position at 75.2-deg W, and declared NOAA operational GOES-East on 18 Dec 2018. NOAA is responsible for all GOES-R products, including Sea Surface Temperature (SST) from the Advanced Baseline Imager (ABI). The ABI offers vastly enhanced capabilities for SST retrievals, over the heritage GOES-I/P Imager, including five narrow bands (centered at 3.9, 8.4, 10.3, 11.2, and 12.3 um) out of 16 that can be used for SST, as well as accurate sensor calibration, image navigation and co-registration, spectral fidelity, and sophisticated pre-processing (geo-rectification, radiance equalization, and mapping). From altitude 35,800 km, G16/ABI can accurately map SST in a Full Disk (FD) area from 15-135-deg W and 60S-60N, with spatial resolution 2km at nadir (degrading to 15km at view zenith angle, 67-deg) and temporal sampling of 10min (15min prior to 2 Apr 2019). The Level 2 Preprocessed (L2P) SST product is derived at the native sensor resolution using NOAA Advanced Clear-Sky Processor for Ocean (ACSPO) system. ACSPO first processes every 10min FD data SSTs are derived from BTs using the ACSPO clear-sky mask (ACSM; Petrenko et al., 2010) and Non-Linear SST (NLSST) algorithm (Petrenko et al., 2014). Currently, only 4 longwave bands centered at 8.4, 10.3, 11.2, and 12.3 um are used (the 3.9 microns was initially excluded, to minimize possible discontinuities in the diurnal cycle). The regression is tuned against quality controlled in situ SSTs from drifting and tropical mooring buoys in the NOAA iQuam system (Xu and Ignatov, 2014). The 10-min FD data are subsequently collated in time, to produce 1-hr L2P product, with improved coverage, and reduced cloud leakages and image noise, compared to each individual 10min image. In the collated L2P, SSTs and BTs are only reported in clear-sky water pixels (defined as ocean, sea, lake or river, and up to 5 km inland) and fill values elsewhere. The L2P is reported in netCDF4 GHRSST Data Specification version 2 (GDS2) format, 24 granules per day, with a total data volume of 0.6GB/day. In addition to SST, ACSPO files also include sun-sensor geometry, four BTs in ABI bands 11 (8.4um), 13 (10.3um), 14 (11.2um), and 15 (12.3um) and two reflectances in bands 2 and 3 (0.64um and 0.86um; used for cloud identification). The l2p_flags layer includes day/night, land, ice, twilight, and glint flags. Other variables include NCEP wind speed and ACSPO SST minus reference SST (Canadian Met Centre 0.1deg L4 SST; available at https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0). Pixel-level earth locations are not reported in the granules, as they remain unchanged from granule to granule. To obtain those, user has a choice of using a flat lat-lon file, or a Python script, both available at ftp://ftp.star.nesdis.noaa.gov/pub/socd4/coastwatch/sst/nrt/abi/nav/. Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel. The ACSPO VIIRS L2P product is monitored and validated against in situ data (Xu and Ignatov, 2014) using the Satellite Quality Monitor SQUAM (Dash et al, 2010), and BTs are validated against RTM simulation in MICROS (Liang and Ignatov, 2011). A reduced size (0.2GB/day), equal-angle gridded (0.02-deg resolution), ACSPO L3C product is also available at https://podaac.jpl.nasa.gov/dataset/ABI_G16-STAR-L3C-v2.70, where gridded L2P SSTs are reported, and BT layers omitted.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -59 -135 59 -15

    PODAAC Short Name: ABI_G16-STAR-L2P-v2.70 Version ID: 2.70 Unique ID: C1653649483-PODAAC