OpenSearch

Using the NASA EOSDIS Common Metadata Repository

Collection Search

  • ADT - Absolute Dynamic Topography

    https://cmr.earthdata.nasa.gov/search/concepts/C1214586177-SCIOPS.xml
    Description:

    Contents: along-track sea surface heights above geoid; dynamic topography is the sum of sea level anomaly (SLA) and mean dynamic topography (MDT, Rio05 here) Use: study of the general circulation (ocean gyres ...) The data are global mono altimeter satellite products, homogeneous with other satellites, available in near-real time and in delayed time in NetCDF format. In delayed time, two types of products are available: - "Ref" (Reference) series: homogeneous datasets based on two satellites (Topex/Poseidon, Jason-1 + ERS, Envisat) with the same groundtrack. Sampling is stable in time. - "Upd" (Updated) series: up-to-date datasets with up to four satellites at a given time (adding GFO and/or Topex/Poseidon on its new orbit). Sampling and Long Wavelength Errors determination are improved, but quality of the series is not homogeneous. Regional products with an improved quality are available in local areas ("http://www.aviso.oceanobs.com/html/donnees/produits/hauteurs/regional/")

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    SCIOPS Short Name: AVISO_ADT Version ID: Not provided Unique ID: C1214586177-SCIOPS

  • ALES Envisat Coastal Altimetry Version 1

    https://cmr.earthdata.nasa.gov/search/concepts/C1674794625-PODAAC.xml
    Description:

    Adaptive Leading Edge Subwaveform (ALES) provides coastal and open ocean altimetric measurements by applying a specialized retracker to Envisat data. This is an along-track dataset that takes takes the high frequency SGDR data and retracks it to remove the waveforms that show land contamination. Therefore these data are provided at 18 Hz. It is similar to the Jason-2 SGDR data except that it also includes ALES variables for the range, significant wave height and sigma0 so that the user can calculate the retracked SSHA.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -82 -180 82 180

    PODAAC Short Name: ALES_L2_OST_ENVISAT_V1 Version ID: 1 Unique ID: C1674794625-PODAAC

  • AVISO Level 4 Absolute Dynamic Topography for Climate Model Comparison

    https://cmr.earthdata.nasa.gov/search/concepts/C1652971731-PODAAC.xml
    Description:

    This dataset contains absolute dynamic topography (similar to sea level but with respect to the geoid) binned and averaged monthly on 1 degree grids. The coverage is from October 1992 to December 2010. These data were provided by AVISO (French space agency data provider) to support the CMIP5 (Coupled Model Intercomparison Project Phase 5) under the World Climate Research Program (WCRP) and was first made available via the JPL Earth System Grid. The dynamic topography are derived from sea surface height measured by several satellites including Envisat, TOPEX/Poseidon, Jason-1 and OSTM/Jason-2, and referenced to the geoid. Along with this dataset, two additional ancillary data files are included in the same directory which contain the number of observations and standard error co-located on the same 1 degree grids.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    PODAAC Short Name: AVISO_L4_DYN_TOPO_1DEG_1MO Version ID: 1 Unique ID: C1652971731-PODAAC

  • Black Sea High Resolution SST L4 Analysis 0.0625 deg Resolution

    https://cmr.earthdata.nasa.gov/search/concepts/C1658476026-PODAAC.xml
    Description:

    CNR MED Sea Surface Temperature provides daily gap-free maps (L4) at 0.0625 deg. x 0.0625 deg. horizontal resolution over the Black Sea. The data are obtained from infra-red measurements collected by satellite radiometers and statistical interpolation. It is the CMEMS sea surface temperature nominal operational product for the Black sea.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 38.75 26.375 48.812 42.375

    PODAAC Short Name: OISST_HR_NRT-GOS-L4-BLK-v2.0 Version ID: 2.0 Unique ID: C1658476026-PODAAC

  • Black Sea High Resolution SST L4 Analysis 0.0625 deg Resolution (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C1597930257-NOAA_NCEI.xml
    Description:

    CNR MED Sea Surface Temperature provides daily gap-free maps (L4) at 0.0625 deg. x 0.0625 deg. horizontal resolution over the Black Sea. The data are obtained from infra-red measurements collected by satellite radiometers and statistical interpolation. It is the CMEMS sea surface temperature nominal operational product for the Black sea.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 38.75 26.375 48.812 42.375

    NOAA_NCEI Short Name: gov.noaa.nodc:GHRSST-OISST_HR_NRT-GOS-L4-BLK Version ID: 2.0 Unique ID: C1597930257-NOAA_NCEI

  • Black Sea Ultra High Resolution SST L4 Analysis 0.01 deg Resolution

    https://cmr.earthdata.nasa.gov/search/concepts/C1658476046-PODAAC.xml
    Description:

    CNR MED Sea Surface Temperature provides daily gap-free maps (L4) at 0.01 deg. x 0.01 deg. horizontal resolution over the Black Sea. The data are obtained from infra-red measurements collected by satellite radiometers and statistical interpolation. It is the CMEMS sea surface temperature nominal operational product for the Black sea.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 38.75 26.375 48.812 42.375

    PODAAC Short Name: OISST_UHR_NRT-GOS-L4-BLK-v2.0 Version ID: 2.0 Unique ID: C1658476046-PODAAC

  • Black Sea Ultra High Resolution SST L4 Analysis 0.01 deg Resolution (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C1597928790-NOAA_NCEI.xml
    Description:

    CNR MED Sea Surface Temperature provides daily gap-free maps (L4) at 0.01 deg. x 0.01 deg. horizontal resolution over the Black Sea. The data are obtained from infra-red measurements collected by satellite radiometers and statistical interpolation. It is the CMEMS sea surface temperature nominal operational product for the Black sea.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 38.75 26.375 48.812 42.375

    NOAA_NCEI Short Name: gov.noaa.nodc:GHRSST-OISST_UHR_NRT-GOS-L4-BLK Version ID: 2.0 Unique ID: C1597928790-NOAA_NCEI

  • CDDIS_SLR_data

    https://cmr.earthdata.nasa.gov/search/concepts/C1000000041-CDDIS.xml
    Description:

    In Satellite Laser Ranging (SLR), a short pulse of coherent light generated by a laser (Light Amplification by Stimulated Emission of Radiation) is transmitted in a narrow beam to illuminate corner cube retroreflectors on the satellite. The return signal, typically a few photons, is collected by a telescope and the time-of-flight is measured. Using information about the satellite's orbit, the time-of-flight, and the speed of light, the location of the ranging station can be determined. Similar data acquired by another station, many kilometers distant from the first, or on a different continent, can be used to determine the distance between stations to precisions of centimeters or better. Repetitive measurements over months and years yield the change in distance, or the motion of the Earth's crust.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    CDDIS Short Name: CDDIS_SLR_data Version ID: 1 Unique ID: C1000000041-CDDIS

  • CDDIS_SLR_predictions

    https://cmr.earthdata.nasa.gov/search/concepts/C1000000025-CDDIS.xml
    Description:

    Predicted satellite orbits for Satellite Laser Ranging (SLR) tracking of satellites equipped with corner cube retroreflectors. SLR stations download these prediction files and coordinate tracking schedules for satellite acquisition. The predicted orbit files typically contain orbit information for multiple days and are issued on a daily or sub-daily basis.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    CDDIS Short Name: CDDIS_SLR_predictions Version ID: 1 Unique ID: C1000000025-CDDIS

  • CEOS Cal Val Test Site - Algeria 3 - Pseudo-Invariant Calibration Site (PICS)

    https://cmr.earthdata.nasa.gov/search/concepts/C1220567099-USGS_LTA.xml
    Description:

    On the background of these requirements for sensor calibration, intercalibration and product validation, the subgroup on Calibration and Validation of the Committee on Earth Observing System (CEOS) formulated the following recommendation during the plenary session held in China at the end of 2004, with the goal of setting-up and operating an internet based system to provide sensor data, protocols and guidelines for these purposes: Background: Reference Datasets are required to support the understanding of climate change and quality assure operational services by Earth Observing satellites. The data from different sensors and the resulting synergistic data products require a high level of accuracy that can only be obtained through continuous traceable calibration and validation activities. Requirement: Initiate an activity to document a reference methodology to predict Top of Atmosphere (TOA) radiance for which currently flying and planned wide swath sensors can be intercompared, i.e. define a standard for traceability. Also create and maintain a fully accessible web page containing, on an instrument basis, links to all instrument characteristics needed for intercomparisons as specified above, ideally in a common format. In addition, create and maintain a database (e.g. SADE) of instrument data for specific vicarious calibration sites, including site characteristics, in a common format. Each agency is responsible for providing data for their instruments in this common format. Recommendation : The required activities described above should be supported for an implementation period of two years and a maintenance period over two subsequent years. The CEOS should encourage a member agency to accept the lead role in supporting this activity. CEOS should request all member agencies to support this activity by providing appropriate information and data in a timely manner. Pseudo-Invariant Calibration Sites (PICS): Algeria 3 is one of six CEOS reference Pseudo-Invariant Calibration Sites (PICS) that are CEOS Reference Test Sites. Besides the nominally good site characteristics (temporal stability, uniformity, homogeneity, etc.), these six PICS were selected by also taking into account their heritage and the large number of datasets from multiple instruments that already existed in the EO archives and the long history of characterization performed over these sites. The PICS have high reflectance and are usually made up of sand dunes with climatologically low aerosol loading and practically no vegetation. Consequently, these PICS can be used to evaluate the long-term stability of instrument and facilitate inter-comparison of multiple instruments.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 29.09 5.22 31.36 10.01

    USGS_LTA Short Name: CEOS_CalVal_Test_Sites-Algeria3 Version ID: Not provided Unique ID: C1220567099-USGS_LTA