OpenSearch

Using the NASA EOSDIS Common Metadata Repository

Collection Search

  • ADT - Absolute Dynamic Topography

    https://cmr.earthdata.nasa.gov/search/concepts/C1214586177-SCIOPS.xml
    Description:

    Contents: along-track sea surface heights above geoid; dynamic topography is the sum of sea level anomaly (SLA) and mean dynamic topography (MDT, Rio05 here) Use: study of the general circulation (ocean gyres ...) The data are global mono altimeter satellite products, homogeneous with other satellites, available in near-real time and in delayed time in NetCDF format. In delayed time, two types of products are available: - "Ref" (Reference) series: homogeneous datasets based on two satellites (Topex/Poseidon, Jason-1 + ERS, Envisat) with the same groundtrack. Sampling is stable in time. - "Upd" (Updated) series: up-to-date datasets with up to four satellites at a given time (adding GFO and/or Topex/Poseidon on its new orbit). Sampling and Long Wavelength Errors determination are improved, but quality of the series is not homogeneous. Regional products with an improved quality are available in local areas ("http://www.aviso.oceanobs.com/html/donnees/produits/hauteurs/regional/")

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    SCIOPS Short Name: AVISO_ADT Version ID: Not provided Unique ID: C1214586177-SCIOPS

  • Black Sea High Resolution SST L4 Analysis 0.0625 deg Resolution

    https://cmr.earthdata.nasa.gov/search/concepts/C2036878059-POCLOUD.xml
    Description:

    CNR MED Sea Surface Temperature provides daily gap-free maps (L4) at 0.0625 deg. x 0.0625 deg. horizontal resolution over the Black Sea. The data are obtained from infra-red measurements collected by satellite radiometers and statistical interpolation. It is the CMEMS sea surface temperature nominal operational product for the Black sea.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 38.75 26.375 48.812 42.375

    POCLOUD Short Name: OISST_HR_NRT-GOS-L4-BLK-v2.0 Version ID: 2.0 Unique ID: C2036878059-POCLOUD

  • Black Sea High Resolution SST L4 Analysis 0.0625 deg Resolution (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C2213642354-GHRSSTCWIC.xml
    Description:

    CNR MED Sea Surface Temperature provides daily gap-free maps (L4) at 0.0625 deg. x 0.0625 deg. horizontal resolution over the Black Sea. The data are obtained from infra-red measurements collected by satellite radiometers and statistical interpolation. It is the CMEMS sea surface temperature nominal operational product for the Black sea.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 38.75 26.375 48.812 42.375

    GHRSSTCWIC Short Name: gov.noaa.nodc:GHRSST-OISST_HR_NRT-GOS-L4-BLK Version ID: 2.0 Unique ID: C2213642354-GHRSSTCWIC

  • Black Sea High Resolution SST L4 Analysis 0.0625 deg Resolution for 2019-09-18 (NCEI Accession 0213517)

    https://cmr.earthdata.nasa.gov/search/concepts/C2089376602-NOAA_NCEI.xml
    Description:

    CNR MED Sea Surface Temperature provides daily gap-free maps (L4) at 0.0625 deg. x 0.0625 deg. horizontal resolution over the Black Sea. The data are obtained from infra-red measurements collected by satellite radiometers and statistical interpolation. It is the CMEMS sea surface temperature nominal operational product for the Black sea.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 38.75 26.375 48.8125 42.375

    NOAA_NCEI Short Name: gov.noaa.nodc:0213517 Version ID: Not Applicable Unique ID: C2089376602-NOAA_NCEI

  • Black Sea Ultra High Resolution SST L4 Analysis 0.01 deg Resolution

    https://cmr.earthdata.nasa.gov/search/concepts/C2036878081-POCLOUD.xml
    Description:

    CNR MED Sea Surface Temperature provides daily gap-free maps (L4) at 0.01 deg. x 0.01 deg. horizontal resolution over the Black Sea. The data are obtained from infra-red measurements collected by satellite radiometers and statistical interpolation. It is the CMEMS sea surface temperature nominal operational product for the Black sea.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 38.75 26.375 48.812 42.375

    POCLOUD Short Name: OISST_UHR_NRT-GOS-L4-BLK-v2.0 Version ID: 2.0 Unique ID: C2036878081-POCLOUD

  • Black Sea Ultra High Resolution SST L4 Analysis 0.01 deg Resolution (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C2213642712-GHRSSTCWIC.xml
    Description:

    CNR MED Sea Surface Temperature provides daily gap-free maps (L4) at 0.01 deg. x 0.01 deg. horizontal resolution over the Black Sea. The data are obtained from infra-red measurements collected by satellite radiometers and statistical interpolation. It is the CMEMS sea surface temperature nominal operational product for the Black sea.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 38.75 26.375 48.812 42.375

    GHRSSTCWIC Short Name: gov.noaa.nodc:GHRSST-OISST_UHR_NRT-GOS-L4-BLK Version ID: 2.0 Unique ID: C2213642712-GHRSSTCWIC

  • CDDIS_SLR_predictions

    https://cmr.earthdata.nasa.gov/search/concepts/C1000000025-CDDIS.xml
    Description:

    Predicted satellite orbits for Satellite Laser Ranging (SLR) tracking of satellites equipped with corner cube retroreflectors. SLR stations download these prediction files and coordinate tracking schedules for satellite acquisition. The predicted orbit files typically contain orbit information for multiple days and are issued on a daily or sub-daily basis.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    CDDIS Short Name: CDDIS_SLR_predictions Version ID: 1 Unique ID: C1000000025-CDDIS

  • CEOS Cal Val Test Site - Algeria 3 - Pseudo-Invariant Calibration Site (PICS)

    https://cmr.earthdata.nasa.gov/search/concepts/C1220567099-USGS_LTA.xml
    Description:

    On the background of these requirements for sensor calibration, intercalibration and product validation, the subgroup on Calibration and Validation of the Committee on Earth Observing System (CEOS) formulated the following recommendation during the plenary session held in China at the end of 2004, with the goal of setting-up and operating an internet based system to provide sensor data, protocols and guidelines for these purposes: Background: Reference Datasets are required to support the understanding of climate change and quality assure operational services by Earth Observing satellites. The data from different sensors and the resulting synergistic data products require a high level of accuracy that can only be obtained through continuous traceable calibration and validation activities. Requirement: Initiate an activity to document a reference methodology to predict Top of Atmosphere (TOA) radiance for which currently flying and planned wide swath sensors can be intercompared, i.e. define a standard for traceability. Also create and maintain a fully accessible web page containing, on an instrument basis, links to all instrument characteristics needed for intercomparisons as specified above, ideally in a common format. In addition, create and maintain a database (e.g. SADE) of instrument data for specific vicarious calibration sites, including site characteristics, in a common format. Each agency is responsible for providing data for their instruments in this common format. Recommendation : The required activities described above should be supported for an implementation period of two years and a maintenance period over two subsequent years. The CEOS should encourage a member agency to accept the lead role in supporting this activity. CEOS should request all member agencies to support this activity by providing appropriate information and data in a timely manner. Pseudo-Invariant Calibration Sites (PICS): Algeria 3 is one of six CEOS reference Pseudo-Invariant Calibration Sites (PICS) that are CEOS Reference Test Sites. Besides the nominally good site characteristics (temporal stability, uniformity, homogeneity, etc.), these six PICS were selected by also taking into account their heritage and the large number of datasets from multiple instruments that already existed in the EO archives and the long history of characterization performed over these sites. The PICS have high reflectance and are usually made up of sand dunes with climatologically low aerosol loading and practically no vegetation. Consequently, these PICS can be used to evaluate the long-term stability of instrument and facilitate inter-comparison of multiple instruments.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 29.09 5.22 31.36 10.01

    USGS_LTA Short Name: CEOS_CalVal_Test_Sites-Algeria3 Version ID: Not provided Unique ID: C1220567099-USGS_LTA

  • CEOS Cal Val Test Site - Algeria 5 - Pseudo-Invariant Calibration Site (PICS)

    https://cmr.earthdata.nasa.gov/search/concepts/C1220567104-USGS_LTA.xml
    Description:

    On the background of these requirements for sensor calibration, intercalibration and product validation, the subgroup on Calibration and Validation of the Committee on Earth Observing System (CEOS) formulated the following recommendation during the plenary session held in China at the end of 2004, with the goal of setting-up and operating an internet based system to provide sensor data, protocols and guidelines for these purposes: Background: Reference Datasets are required to support the understanding of climate change and quality assure operational services by Earth Observing satellites. The data from different sensors and the resulting synergistic data products require a high level of accuracy that can only be obtained through continuous traceable calibration and validation activities. Requirement: Initiate an activity to document a reference methodology to predict Top of Atmosphere (TOA) radiance for which currently flying and planned wide swath sensors can be intercompared, i.e. define a standard for traceability. Also create and maintain a fully accessible web page containing, on an instrument basis, links to all instrument characteristics needed for intercomparisons as specified above, ideally in a common format. In addition, create and maintain a database (e.g. SADE) of instrument data for specific vicarious calibration sites, including site characteristics, in a common format. Each agency is responsible for providing data for their instruments in this common format. Recommendation : The required activities described above should be supported for an implementation period of two years and a maintenance period over two subsequent years. The CEOS should encourage a member agency to accept the lead role in supporting this activity. CEOS should request all member agencies to support this activity by providing appropriate information and data in a timely manner. Pseudo-Invariant Calibration Sites (PICS): Algeria 5 is one of six CEOS reference Pseudo-Invariant Calibration Sites (PICS) that are CEOS Reference Test Sites. Besides the nominally good site characteristics (temporal stability, uniformity, homogeneity, etc.), these six PICS were selected by also taking into account their heritage and the large number of datasets from multiple instruments that already existed in the EO archives and the long history of characterization performed over these sites. The PICS have high reflectance and are usually made up of sand dunes with climatologically low aerosol loading and practically no vegetation. Consequently, these PICS can be used to evaluate the long-term stability of instrument and facilitate inter-comparison of multiple instruments.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 29.24 -1.32 32.79 4.24

    USGS_LTA Short Name: CEOS_CalVal_Test_Sites-Algeria5 Version ID: Not provided Unique ID: C1220567104-USGS_LTA

  • CEOS Cal Val Test Site - Dome C, Antarctica - Instrumented Site

    https://cmr.earthdata.nasa.gov/search/concepts/C1220566821-USGS_LTA.xml
    Description:

    On the background of these requirements for sensor calibration, intercalibration and product validation, the subgroup on Calibration and Validation of the Committee on Earth Observing System (CEOS) formulated the following recommendation during the plenary session held in China at the end of 2004, with the goal of setting-up and operating an internet based system to provide sensor data, protocols and guidelines for these purposes: Background: Reference Datasets are required to support the understanding of climate change and quality assure operational services by Earth Observing satellites. The data from different sensors and the resulting synergistic data products require a high level of accuracy that can only be obtained through continuous traceable calibration and validation activities. Requirement: Initiate an activity to document a reference methodology to predict Top of Atmosphere (TOA) radiance for which currently flying and planned wide swath sensors can be intercompared, i.e. define a standard for traceability. Also create and maintain a fully accessible web page containing, on an instrument basis, links to all instrument characteristics needed for intercomparisons as specified above, ideally in a common format. In addition, create and maintain a database (e.g. SADE) of instrument data for specific vicarious calibration sites, including site characteristics, in a common format. Each agency is responsible for providing data for their instruments in this common format. Recommendation : The required activities described above should be supported for an implementation period of two years and a maintenance period over two subsequent years. The CEOS should encourage a member agency to accept the lead role in supporting this activity. CEOS should request all member agencies to support this activity by providing appropriate information and data in a timely manner. Instrumented Sites: Dome C, Antarctica is one of eight instrumented sites that are CEOS Reference Test Sites. The CEOS instrumented sites are provisionally being called LANDNET. These instrumented sites are primarily used for field campaigns to obtain radiometric gain, and these sites can serve as a focus for international efforts, facilitating traceability and inter-comparison to evaluate biases of in-flight and future instruments in a harmonized manner.  In the longer-term it is anticipated that these sites will all be fully automated and provide surface and atmospheric measurements to the WWW in an autonomous manner reducing some of the cost of a manned campaign, at present three can operate in this manner.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -76.6 123 -74.5 131.18

    USGS_LTA Short Name: CEOS_CalVal_Test_Site-Dome_C-Antarctica Version ID: Not provided Unique ID: C1220566821-USGS_LTA