- Home
- Collection search
Collection Search
-
GPS Radio Occultation Boundary Layer Depth Annual L3 V2 (GPSROZPBLA) at GES DISC
https://cmr.earthdata.nasa.gov/search/concepts/C2226544227-GES_DISC.xmlDescription:This dataset provides an annual average climatology of planetary boundary layer (PBL) height derived from COSMIC/FORMOSAT-3, TerraSAR-X, KOMPSAT-5, and PAZ Global Positioning System (GPS) radio occultation (RO) measurements. The COSMIC/FORMOSAT-3 mission consists of a six-satellite constellation launched in 2006. Each satellite carries an Integrated GPS Occultation Receiver (IGOR) GPS receiver and is equipped with fore and aft looking antenna to track both setting and rising occultations. The constellation provides globally distributed measurements across different local times. The instrument tracks the L-band microwave signal broadcast by a GPS satellite in a limb-viewing geometry. The IGOR receivers are capable of tracking the GPS signals in open loop through the middle to lower troposphere, which is essential for obtaining data with high quality for PBL height estimation, especially at low latitudes. The refractivity profiles form the basis for this PBL height product. For each occultation, the PBL height is calculated as the height where the vertical gradient of the refractivity (dN/dz) is minimum. This algorithm is designed to locate the height where a large vertical change in refractivity occurs, corresponding to the transition from the free troposphere to the PBL. More details can be found in Ao et al. (2012). This is the latest version of this collection which supercedes previous versions.
Links: Temporal Extent: Spatial Extent:Minimum Bounding Rectangle: -90 -180 90 180GES_DISC Short Name: GPSROZPBLA Version ID: 2 Unique ID: C2226544227-GES_DISC
-
GPS Radio Occultation Boundary Layer Depth Seasonal L3 V2 (GPSROZPBLS) at GES DISC
https://cmr.earthdata.nasa.gov/search/concepts/C2226041112-GES_DISC.xmlDescription:This dataset provides a seasonal average climatology of global planetary boundary layer (PBL) height derived from COSMIC/FORMOSAT-3, TerraSAR-X, KOMPSAT-5, and PAZ Global Positioning System (GPS) radio occultation (RO) measurements. The COSMIC/FORMOSAT-3 mission consists of a six-satellite constellation launched in 2006. Each satellite carries an Integrated GPS Occultation Receiver (IGOR) GPS receiver and is equipped with fore and aft looking antenna to track both setting and rising occultations. The constellation provides globally distributed measurements across different local times. The instrument tracks the L-band microwave signal broadcast by a GPS satellite in a limb-viewing geometry. The IGOR receivers are capable of tracking the GPS signals in open loop through the middle to lower troposphere, which is essential for obtaining data with high quality for PBL height estimation, especially at low latitudes. The refractivity profiles form the basis for this PBL height product. For each occultation, the PBL height is calculated as the height where the vertical gradient of the refractivity (dN/dz) is minimum. This algorithm is designed to locate the height where a large vertical change in refractivity occurs, corresponding to the transition from the free troposphere to the PBL. More details can be found in Ao et al. (2012). This is the latest version of this collection which supersedes previous versions.
Links: Temporal Extent: Spatial Extent:Minimum Bounding Rectangle: -90 -180 90 180GES_DISC Short Name: GPSROZPBLS Version ID: 2 Unique ID: C2226041112-GES_DISC
-
PAZ ESA archive
https://cmr.earthdata.nasa.gov/search/concepts/C2547579176-ESA.xmlDescription:The PAZ ESA archive collection consists of PAZ Level 1 data previously requested by ESA supported projects over their areas of interest around the world and, as a consequence, the products are scattered and dispersed worldwide and in different time windows. The dataset regularly grows as ESA collects new products over the years. Available modes are: • StripMap mode (SM): SSD less than 3m for a scene 30km x 50km in single polarization or 15km x 50km in dual polarisation • ScanSAR mode (SC): the scene is 100 x 150 km2, SSD less than 18m in signle pol only • Wide ScanSAR mode (WS): single polarisation only, with SS less than 40m and scene size of 270 x 200 km2 • Spotlight modes (SL): SSD less than 2m for a scene 10km x 10km, both single and dual polarization are available • High Resolution Spotlight mode (HS): in both single and dual polarisation, the scene is 10x5 km2, SSD less than 1m • Staring Spotlight mode (ST): SSD is 25cm, the scene size is 4 x 4 km2, in single polarisation only. The available geometric projections are: • Single Look Slant Range Complex (SSC): single look product, no geocoding, no radiometric artifact included, the pixel spacing is equidistant in azimuth and in ground range • Multi Look Ground Range Detected (MGD): detected multi look product, simple polynomial slant-to-ground projection is performed in range, no image rotation to a map coordinate system is performed • Geocoded Ellipsoid Corrected (GEC): multi look detected product, projected and re-sampled to the WGS84 reference ellipsoid with no terrain corrections • Enhanced Ellipsoid Corrected (EEC): multi look detected product, projected and re-sampled to the WGS84 reference ellipsoid, the image distortions caused by varying terrain height are corrected using a DEM The following table summarises the offered product types EO-SIP product type Operation Mode Geometric Projection PSP_SM_SSC Stripmap (SM) Single Look Slant Range Complex (SSC) PSP_SM_MGD Stripmap (SM) Multi Look Ground Range Detected (MGD) PSP_SM_GEC Stripmap (SM) Geocoded Ellipsoid Corrected (GEC) PSP_SM_EEC Stripmap (SM) Enhanced Ellipsoid Corrected (EEC) PSP_SC_MGD ScanSAR (SC) Single Look Slant Range Complex (SSC) PSP_SC_GEC ScanSAR (SC) Multi Look Ground Range Detected (MGD) PSP_SC_EEC ScanSAR (SC) Geocoded Ellipsoid Corrected (GEC) PSP_SC_SSC ScanSAR (SC) Enhanced Ellipsoid Corrected (EEC) PSP_SL_SSC Spotlight (SL) Single Look Slant Range Complex (SSC) PSP_SL_MGD Spotlight (SL) Multi Look Ground Range Detected (MGD) PSP_SL_GEC Spotlight (SL) Geocoded Ellipsoid Corrected (GEC) PSP_SL_EEC Spotlight (SL) Enhanced Ellipsoid Corrected (EEC) PSP_HS_SSC High Resolution Spotlight (HS) Single Look Slant Range Complex (SSC) PSP_HS_MGD High Resolution Spotlight (HS) Multi Look Ground Range Detected (MGD) PSP_HS_GEC High Resolution Spotlight (HS) Geocoded Ellipsoid Corrected (GEC) PSP_HS_EEC High Resolution Spotlight (HS) Enhanced Ellipsoid Corrected (EEC) PSP_ST_SSC Staring Spotlight (ST) Single Look Slant Range Complex (SSC) PSP_ST_MGD Staring Spotlight (ST) Multi Look Ground Range Detected (MGD) PSP_ST_GEC Staring Spotlight (ST) Geocoded Ellipsoid Corrected (GEC) PSP_ST_EEC Staring Spotlight (ST) Enhanced Ellipsoid Corrected (EEC) PSP_WS_SSC Wide ScanSAR (WS) Single Look Slant Range Complex (SSC) PSP_WS_MGD Wide ScanSAR (WS) Multi Look Ground Range Detected (MGD) PSP_WS_GEC Wide ScanSAR (WS) Geocoded Ellipsoid Corrected (GEC) PSP_WS_EEC Wide ScanSAR (WS) Enhanced Ellipsoid Corrected (EEC)
Links: Temporal Extent: Spatial Extent:Minimum Bounding Rectangle: -90 -180 90 180ESA Short Name: PAZ.ESA.archive Version ID: 16.0 Unique ID: C2547579176-ESA
This collection does not contain any granules -
PAZ Full Archive and New Tasking
https://cmr.earthdata.nasa.gov/search/concepts/C2119689657-ESA.xmlDescription:PAZ Image Products can be acquired in 8 image modes with flexible resolutions (from 1 m to 40 m) and scene sizes. Thanks to different polarimetric combinations and processing levels the delivered imagery can be tailored specifically to meet the requirements of the application. Available modes are: • StripMap mode (SM) in single and dual polarisation: The ground swath is illuminated with a continuous train of pulses while the antenna beam is pointed to a fixed angle, both in elevation and in azimuth. • ScanSAR mode (SC) in single polarisation: the swath width is increased respecting to the StripMap mode, it is composed of four different sub-swaths, which are obtained by antenna steering in elevation direction. • Wide ScanSAR mode (WS), in single polarisation: the usage of six sub-swaths allows to obtain a higher swath coverage product. • Spotlight modes: in single and dual polarisation: Spotlight modes take advantage of the beam steering capability in the azimuth plane to illuminate for a longer time the area of interest: a sensible improvement of the azimuth resolution is achieved at the expense of a shorter scene size. Spotlight mode (SL) is designed to maximise the azimuth scene extension at the expense of the spatial resolution, and High Resolution Spotlight mode (HS) is designed to maximize the spatial resolutions at the expense of the scene extension. • Staring Spotlight mode (ST), in single polarisation: The virtual rotation point coincides with the center of the beam: the image length in the flight direction is constrained by the projection on- ground of the azimuth beamwidth and it leads to a target azimuth illumination time increment and to achieve the best azimuth resolution. There are two main classes of products: • Spatially Enhanced products (SE): designed with the target of maximize the spatial resolution in pixels with squared size, so the larger resolution value of azimuth or ground range determines the square pixel size, and the smaller resolution value is adjusted to this size and the corresponding reduction of the bandwidth is used for speckle reduction. • Radiometrically Enhanced products (RE): designed with the target of maximize the radiometry, so the range and azimuth resolutions are intentionally decreased to significantly reduce speckle by averaging several looks. The following geometric projections are offered: • Single Look Slant Range Complex (SSC): single look product of the focused radar signal: the pixels are spaced equidistant in azimuth and in slant range. No geocoding is available, no radiometric artifacts included. Product delivered in the DLR-defined binary COSAR format. The SSC product is intended for applications that require the full bandwidth and phase information, e.g. for SAR interferometry and polarimetry. • Multi Look Ground Range Detected (MGD): detected multi look product in GeoTiff format with reduced speckle and approximately square resolution cells on ground. The image coordinates are oriented along flight direction and along ground range; the pixel spacing is equidistant in azimuth and in ground range. A simple polynomial slant to ground projection is performed in range using a WGS84 ellipsoid and an average, constant terrain height parameter. No image rotation to a map coordinate system is performed and interpolation artifacts are thus avoided. • Geocoded Ellipsoid Corrected (GEC): multi look detected product in GeoTiff format. It is projected and re-sampled to the WGS84 reference ellipsoid assuming one average terrain height. No terrain correction performed. UTM is the standard projection, for polar regions UPS is applied. • Enhanced Ellipsoid Corrected (EEC): multi look detected product in GeoTiff format. It is projected and re-sampled to the WGS84 reference ellipsoid. The image distortions caused by varying terrain height are corrected using an external DEM; therefore the pixel localization in these products is highly accurate. UTM is the standard projection, for polar regions UPS is applied. StripMap Single Mode ID: SM-S Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: 30 x 50 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 2.99 - 3.52 at (45° - 20°) - MGD, GEC, EEC (RE)[Ground range] 6.53 - 7.65 at (45° - 20°) - SSC[Slant range] 1.1 (150 MHz bandwidth) 1.7 (100 MHz bandwidth) Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 3.05 - MGD, GEC, EEC (RE) 6.53 - 7.60 at (45° - 20°) - SSC 3.01 StripMap Dual Mode ID: SM-D Polarizations: HH/VV, HH/HV, VV/VH Scene size (Range x Azimuth) [km]: 15 x 50 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 6 - MGD, GEC, EEC (RE)[Ground range] 7.51 - 10.43 at (45° - 20°) - SSC[Slant range] 1.18 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 6.11 - MGD, GEC, EEC (RE) 7.52 - 10.4 at (45° - 20°) - SSC ScanSAR Mode ID: SC Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: 100 x 150 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] N/A - MGD, GEC, EEC (RE)[Ground range] 16.79 - 18.19 at (45° - 20°) - SSC[Slant range] 1.17 - 3.4 (depending on range bandwidth) Azimuth Resolution [m]: - MGD, GEC, EEC (SE) N/A - MGD, GEC, EEC (RE) 17.66 - 18.18 at (45° - 20°) - SSC 18.5 Wide ScanSAR Mode ID: WS Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: [273-196] x 208 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] N/A - MGD, GEC, EEC (RE)[Ground range] 35 - SSC[Slant range] 1.75 - 3.18 (depending on range bandwidth) Azimuth Resolution [m]: - MGD, GEC, EEC (SE) N/A - MGD, GEC, EEC (RE) 39 - SSC 38.27 Spotlight Single Mode ID: SL-S Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: 10 x 10 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 1.55 - 3.43 at (55° - 20°) - MGD, GEC, EEC (RE)[Ground range] 3.51 - 5.43 at (55° - 20°) - SSC[Slant range] 1.18 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 1.56 - 2.9 at (55° - 20°) - MGD, GEC, EEC (RE) 3.51 - 5.4 at (55° - 20°) - SSC 1.46 Spotlight Dual Mode ID: SL-D Polarizations: HH/VV, HH/HV, VV/VH Scene size (Range x Azimuth) [km]: 10 x 10 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 3.09 - 3.5 at (55° - 20°) - MGD, GEC, EEC (RE)[Ground range] 4.98 - 7.63 at (55° - 20°) - SSC[Slant range] 1.17 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 3.53 - MGD, GEC, EEC (RE) 4.99 - 7.64 at (55° - 20°) - SSC 3.1 HR Spotlight Single Mode ID: HS-S Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: 10-6 x 5 (depending on incident angle) Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 1 - 1.76 at (55° - 20°) - MGD, GEC, EEC (RE)[Ground range] 2.83 - 3.11 at (55° - 20°) - SSC[Slant range] 0.6 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 1 - 1.49 at (55 °- 20°) - MGD, GEC, EEC (RE) 2.83 - 3.13 at (55° - 20°) - SSC 1.05 HR Spotlight Dual Mode ID: HS-D Polarizations: HH/VV, HH/HV, VV/VH Scene size (Range x Azimuth) [km]: 10 x 5 Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 2 - 3.5 at (55° - 20°) - MGD, GEC, EEC (RE)[Ground range] 4 - 6.2 at (55° - 20°) - SSC[Slant range] 1.17 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 2.38 - 2.93 at (55° - 20°) - MGD, GEC, EEC (RE) 4 - 6.25 at (55° - 20°) - SSC 2.16 Staring Spotlight Mode ID: ST Polarizations: HH, VV, HV, VH Scene size (Range x Azimuth) [km]: [9-4.6] x [2.7-3.6] Range Resolution [m]: - MGD, GEC, EEC (SE)[Ground range] 0.96 - 1.78 at (45°- 20°) - MGD, GEC, EEC (RE)[Ground range] 0.97 - 1.78 at (45°-20°) - SSC[Slant range] 0.59 Azimuth Resolution [m]: - MGD, GEC, EEC (SE) 0.38 - 0.7 at (45°-20°) - MGD, GEC, EEC (RE) 0.97 - 1.42 at (45°-20°) - SSC 0.22 All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section. For archive data, the user is invited to search PAZ products by using the USP (User Service Provider) web portal (http://www.geos.hisdesat.es/) (self registration required) in order to verify the availability over the Area of Interest in the Time of Interest.
Links: Temporal Extent: Spatial Extent:Minimum Bounding Rectangle: -90 -180 90 180ESA Short Name: PAZ.Full.Archive.and.New.Tasking Version ID: 7.0 Unique ID: C2119689657-ESA
This collection does not contain any granules