OpenSearch

Using the NASA EOSDIS Common Metadata Repository

Collection Search

  • Arctic Satellite Composite Imagery - Infrared

    https://cmr.earthdata.nasa.gov/search/concepts/C1214598097-SCIOPS.xml
    Description:

    The Space Science and Engineering Center at the University of Wisconsin-Madison generates an infrared (~11.0 microns) Arctic satellite composite imagery. Using a mosaic of all satellite data available allows the benefits of both the timeliness and routine observations of geostationary satellites as well as the high latitude coverage of the polar orbiting satellites. The Arctic composites are made every three hours (synoptic hour) creating a total of eight images per day. More recently, Arctic composites are created every hour for a total of 24 images per day. Most input satellite observations included in the composite were procured within 15 minutes of the top of the synoptic hour. No image is more than +/- 50 minutes from the top of the synoptic hour. Geostationary and Polar orbiting satellites used to generate the composite can include: POES/NOAA, GOES -East and ?West, METOSAT, MTSAT, FY-2, Kalpana-1, and Terra/Aqua.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 28 -180 90 180

    SCIOPS Short Name: SSEC-ARCTIC-Composite-Infrared-ARC-0713843 Version ID: Not provided Unique ID: C1214598097-SCIOPS

  • Arctic Satellite Composite Imagery - Longwave Infrared

    https://cmr.earthdata.nasa.gov/search/concepts/C1214598122-SCIOPS.xml
    Description:

    The Space Science and Engineering Center at the University of Wisconsin-Madison generates a longwave infrared (~12.0 microns) Arctic satellite composite imagery. Using a mosaic of all satellite data available allows the benefits of both the timeliness and routine observations of geostationary satellites as well as the high latitude coverage of the polar orbiting satellites. The Arctic composites are made every three hours (synoptic hour) creating a total of eight images per day. Most input satellite observations included in the composite were procured within 15 minutes of the top of the synoptic hour. No image is more than +/- 50 minutes from the top of the synoptic hour. Geostationary and Polar orbiting satellites used to generate the composite can include: POES/NOAA, GOES -East and ?West, METOSAT, MTSAT, FY-2, Kalpana-1, and Terra/Aqua.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 28 -180 90 180

    SCIOPS Short Name: SSEC-ARCTIC-Composite-LongwaveInfrared-ARC-0713843 Version ID: Not provided Unique ID: C1214598122-SCIOPS

  • Arctic Satellite Composite Imagery - Shortwave Infrared

    https://cmr.earthdata.nasa.gov/search/concepts/C1214598142-SCIOPS.xml
    Description:

    The Space Science and Engineering Center at the University of Wisconsin-Madison generates a shortwave infrared (~3.8 microns) Arctic satellite composite imagery. Using a mosaic of all satellite data available allows the benefits of both the timeliness and routine observations of geostationary satellites as well as the high latitude coverage of the polar orbiting satellites. The Arctic composites are made every three hours (synoptic hour) creating a total of eight images per day. Most input satellite observations included in the composite were procured within 15 minutes of the top of the synoptic hour. No image is more than +/- 50 minutes from the top of the synoptic hour. Geostationary and Polar orbiting satellites used to generate the composite can include: POES/NOAA, GOES -East and ?West, METOSAT, MTSAT, FY-2, Kalpana-1, and Terra/Aqua.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 28 -180 90 180

    SCIOPS Short Name: SSEC-ARCTIC-Composite-ShortwaveInfrared-ARC-0713843 Version ID: Not provided Unique ID: C1214598142-SCIOPS

  • Arctic Satellite Composite Imagery - Visible

    https://cmr.earthdata.nasa.gov/search/concepts/C1214598096-SCIOPS.xml
    Description:

    The Space Science and Engineering Center at the University of Wisconsin-Madison generates an visible (~0.65 microns) Arctic satellite composite imagery. Using a mosaic of all satellite data available allows the benefits of both the timeliness and routine observations of geostationary satellites as well as the high latitude coverage of the polar orbiting satellites. The Arctic visible composites are created every hour for a total of 24 images per day. Most input satellite observations included in the composite were procured within 15 minutes of the top of the synoptic hour. No image is more than +/- 50 minutes from the top of the synoptic hour. Geostationary and Polar orbiting satellites used to generate the composite can include: POES/NOAA, GOES -East and ?West, METOSAT, MTSAT, FY-2, Kalpana-1, and Terra/Aqua.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 28 -180 90 180

    SCIOPS Short Name: SSEC-ARCTIC-Composite-Visible-ARC-0713843 Version ID: Not provided Unique ID: C1214598096-SCIOPS

  • Arctic Satellite Composite Imagery - Water Vapor

    https://cmr.earthdata.nasa.gov/search/concepts/C1214598141-SCIOPS.xml
    Description:

    The Space Science and Engineering Center at the University of Wisconsin-Madison generates a water vapor (~6.7 microns) Arctic satellite composite imagery. Using a mosaic of all satellite data available allows the benefits of both the timeliness and routine observations of geostationary satellites as well as the high latitude coverage of the polar orbiting satellites. The Arctic composites are made every three hours (synoptic hour) creating a total of eight images per day. No image is more than +/- 50 minutes from the top of the synoptic hour. Geostationary and Polar orbiting satellites used to generate the composite can include: GOES -East and �West, METOSAT, MTSAT, FY-2, Kalpana-1, and Terra/Aqua.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 28 -180 90 180

    SCIOPS Short Name: SSEC-ARCTIC-Composite-WaterVapor-ARC-0713843 Version ID: Not provided Unique ID: C1214598141-SCIOPS

  • CERES GEO Cloud Retrievals in ISCCP-D2like Format Daytime Edition3A

    https://cmr.earthdata.nasa.gov/search/concepts/C7019528-LARC_ASDC.xml
    Description:

    CER_ISCCP-D2like-GEO_DAY_Edition3A is the Clouds and the Earth's Radiant Energy System (CERES) Geostationary Satellite (GEO) Cloud Retrievals in International Satellite Cloud Climatology Project (ISCCP)-D2like Format Daytime Edition3A data product. Data collection for this product is complete. The Monthly Gridded Cloud Averages (ISCCP-D2like-GEO) data product contains monthly and monthly 3-hourly (GMT-based) gridded regional mean geostationary satellite (GEO) cloud properties as a function of 18 cloud types, similar to the ISCCP D2 product, where the cloud properties are stratified by pressure, optical depth, and phase. The ISCCP-D2like-GEO product is a 5-satellite, daytime 3-hourly GMT, 8-km nominal resolution, geostationary-only cloud product limited to . The ISCCP-D2like-GEO is a daytime-only product, where the cloud retrievals incorporate only the visible and IR channels common to all geostationary satellites for spatial consistency. Each ISCCP-D2like file covers a single month. CERES is a key component of the Earth Observing System (EOS) program. The CERES instruments provide radiometric measurements of the Earth's atmosphere from three broadband channels. The CERES missions are a follow-on to the successful Earth Radiation Budget Experiment (ERBE) mission. The first CERES instrument, protoflight model (PFM), was launched on November 27, 1997 as part of the Tropical Rainfall Measuring Mission (TRMM). Two CERES instruments (FM1 and FM2) were launched into polar orbit on board the Earth Observing System (EOS) flagship Terra on December 18, 1999. Two additional CERES instruments (FM3 and FM4) were launched on board Earth Observing System (EOS) Aqua on May 4, 2002. The CERES FM5 instrument was launched on board the Suomi National Polar-orbiting Partnership (NPP) satellite on October 28, 2011. The newest CERES instrument (FM6) was launched on board the Joint Polar-Orbiting Satellite System 1 (JPSS-1) satellite, now called NOAA-20, on November 18, 2017.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    LARC_ASDC Short Name: CER_ISCCP-D2like-GEO_DAY Version ID: Edition3A Unique ID: C7019528-LARC_ASDC

  • CERES MODIS and GEO Cloud Retrievals in ISCCP-D2like Format Daytime Edition3A

    https://cmr.earthdata.nasa.gov/search/concepts/C7019527-LARC_ASDC.xml
    Description:

    CER_ISCCP-D2like-Mrg_GEO-MODIS-DAY_Edition3A is the Clouds and the Earth's Radiant Energy System (CERES) Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Satellite (GEO) Cloud Retrievals in International Satellite Cloud Climatology Project (ISCCP) – Day 2like Format Daytime Edition3A data product. This product is a merge of data from the following platforms and instruments: Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat Operational Programme 10 (METEOSAT-10); Japanese Advanced Meteorological Imager (JAMI) on The Multi-functional Transport Satellite 2 (MTSAT-2); SEVIRI on METEOSAT-9; Visible and Infrared Spin Scan Radiometer (GMS Series) on (VISSR-GMS) on Geostationary Meteorological Satellite-5 (GMS-5); SEVIRI on METEOSAT-8; Geostationary Operational Environmental Satellite (GOES) I-M IMAGER on Geostationary Operational Environmental Satellite 9 (GOES-9); GOES-11 IMAGER on GOES-11; GOES N-P IMAGER on GOES-13; GOES-8 IMAGER on GOES-8; GOES I-M IMAGER on GOES-10; SEVIRI on METEOSAT-7; MODIS on Terra; GOES N-P IMAGER on GOES-14; MVIRI on METEOSAT-5; GOES-12 IMAGER on GOES-12; GOES-15 IMAGER on GOES-15; MODIS on Aqua; JAMI on Multi-functional Transport Satellite 1 Replacement (MTSAT-1R). Data collection for this product is complete. The Monthly Gridded Cloud Averages (ISCCP-D2like-Mrg) data products contain monthly and monthly 3-hourly (GMT-based) gridded regional mean cloud properties as a function of 18 cloud types, similar to the ISCCP D2 product, where the cloud properties are stratified by pressure, optical depth, and phase. The merged (Mrg) product combines daytime cloud properties from Terra-MODIS (10:30 AM local equator crossing time LECT), Aqua-MODIS (1:30 PM LECT), and geostationary satellites (GEO) to provide the most diurnally complete daytime ISCCP-D2like product. The GEO cloud properties have been normalized with MODIS for diurnal consistency. The CERES MODIS-derived cloud properties are not the official NASA MODIS cloud retrievals but are based on the CERES cloud working group retrievals that are also available in other CERES products. The CERES MODIS-derived cloud properties provide coverage from pole to pole. The 3-hourly GMT-based GEO cloud properties come from five satellites at 8 km nominal resolution with limited coverage. The GEO daytime cloud retrievals incorporate only a visible and IR channel common to all geostationary satellites for spatial consistency. The geostationary calibration is normalized to Terra-MODIS. Each ISCCP-D2like file covers a single month. CERES is a key component of the Earth Observing System (EOS) program. The CERES instruments provide radiometric measurements of the Earth's atmosphere from three broadband channels. The CERES missions are a follow-on to the successful Earth Radiation Budget Experiment (ERBE) mission. The first CERES instrument, protoflight model (PFM), was launched on November 27, 1997 as part of the Tropical Rainfall Measuring Mission (TRMM). Two CERES instruments (FM1 and FM2) were launched into polar orbit on board the Earth Observing System (EOS) flagship Terra on December 18, 1999. Two additional CERES instruments (FM3 and FM4) were launched on board Earth Observing System (EOS) Aqua on May 4, 2002. The CERES FM5 instrument was launched on board the Suomi National Polar-orbiting Partnership (NPP) satellite on October 28, 2011. The newest CERES instrument (FM6) was launched on board the Joint Polar-Orbiting Satellite System 1 (JPSS-1) satellite, now called NOAA-20, on November 18, 2017.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    LARC_ASDC Short Name: CER_ISCCP-D2like-Mrg_GEO-MODIS-DAY Version ID: Edition3A Unique ID: C7019527-LARC_ASDC

  • GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis

    https://cmr.earthdata.nasa.gov/search/concepts/C1650311564-PODAAC.xml
    Description:

    A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean group using a multi-scale two-dimensional variational (MS-2DVAR) blending algorithm on a global 0.009 degree grid. This Global 1 km SST (G1SST) analysis uses satellite data from sensors that include the Advanced Very High Resolution Radiometer (AVHRR), the Advanced Along Track Scanning Radiometer (AATSR), the Spinning Enhanced Visible and Infrared Imager (SEVIRI), the Advanced Microwave Scanning Radiometer-EOS (AMSRE), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Geostationary Operational Environmental Satellite (GOES) Imager, the Multi-Functional Transport Satellite 1R (MTSAT-1R) radiometer, and in situ data from drifting and moored buoys.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -80 -180 80 180

    PODAAC Short Name: JPL_OUROCEAN-L4UHfnd-GLOB-G1SST Version ID: 1 Unique ID: C1650311564-PODAAC

  • GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    https://cmr.earthdata.nasa.gov/search/concepts/C1597990361-NOAA_NCEI.xml
    Description:

    A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean group using a multi-scale two-dimensional variational (MS-2DVAR) blending algorithm on a global 0.009 degree grid. This Global 1 km SST (G1SST) analysis uses satellite data from sensors that include the Advanced Very High Resolution Radiometer (AVHRR), the Advanced Along Track Scanning Radiometer (AATSR), the Spinning Enhanced Visible and Infrared Imager (SEVIRI), the Advanced Microwave Scanning Radiometer-EOS (AMSRE), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Geostationary Operational Environmental Satellite (GOES) Imager, the Multi-Functional Transport Satellite 1R (MTSAT-1R) radiometer, and in situ data from drifting and moored buoys.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -80 -180 80 180

    NOAA_NCEI Short Name: gov.noaa.nodc.GHRSST-JPL_OUROCEAN-L4UHfnd-GLOB-G1SST Version ID: 1 Unique ID: C1597990361-NOAA_NCEI

  • IMS Daily Northern Hemisphere Snow and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version 1

    https://cmr.earthdata.nasa.gov/search/concepts/C1386246258-NSIDCV0.xml
    Description:

    This data set provides maps of snow cover and sea ice for the Northern Hemisphere from February 1997 to the present from the United States National Ice Center (USNIC). USNIC analysts produce these using the Interactive Multisensor Snow and Ice Mapping System (IMS). Maps are derived from a variety of data products including satellite imagery and in situ data. The data are provided in ASCII text and GeoTIFF formats in three different resolutions: 1 km, 4 km, and 24 km. Note: The IMS product is considered an operational product; however, USNIC, who creates this product, does not guarantee availability or timely delivery of data via the NIC Web server. NSIDC, as the data archive, does not guarantee availability of this product via the NSIDC Web server. These servers should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. Users with real-time operational needs should visit the USNIC Web site and contact the USNIC Liaison to request access to their operational server.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: 0 -180 90 180

    NSIDCV0 Short Name: G02156 Version ID: 1 Unique ID: C1386246258-NSIDCV0