OpenSearch

Using the NASA EOSDIS Common Metadata Repository

Collection Search

  • AHI/Himawari-08 Dark Target Aerosol 10-Min L2 Full Disk 10 km

    https://cmr.earthdata.nasa.gov/search/concepts/C2859255251-LAADS.xml
    Description:

    The AHI/Himawari-08 Dark Target Aerosol 10-Min L2 Full Disk 10 km product, short-name XAERDT_L2_AHI_H08 is provided at 10-km spatial resolution (at-nadir) and a 10-minute full-disk cadence that typically yields about 142 granules over the daylit hours of a 24-hour period (there are no images produced at 02:20 or 14:20 UTC for navigation purposes). The Himawari-8 platform served in the operational Himawari position (near 140.7°E) between October 2014 and 13 December 2022. Himawari-9 replaced Himawari-8 and is currently operational. The Himawari-8/AHI collection record spans from January 2019 through 12th December 2022. The final 19 days of 2022 (December 13 through 31) are served by L2 products derived from the Himawari-9/AHI instrument. The XAERDT_L2_AHI_H08 product is a part of the Geostationary Earth Orbit (GEO)–Low-Earth Orbit (LEO) Dark Target Aerosol project under NASA’s Making Earth System Data Records for Use in Research Environments (MEaSUREs) program, led by Robert Levy, uses a special version of the MODIS Dark Target (DT) aerosol retrieval algorithm to produce Aerosol Optical Depth (AOD) and other aerosol parameters derived independently from seven sensor/platform combinations, where 3 are in GEO and 4 are in LEO. The 3 GEO sensors include Advanced Baseline Imagers (ABI) on both GOES-16 (GOES-East) and GOES-17 (GOES-West), and Advanced Himawari Imager (AHI) on Himawari-8. The 4 LEO sensors include MODIS on both Terra and Aqua, and VIIRS on both Suomi-NPP and NOAA-20. Adding the LEO sensors reinforces a major goal of this project, which is to render a consistent science maturity level across DT aerosol products derived from both types and sources of orbital satellites. The XAERDT_L2_AHI_H08 product, in netCDF4 format, contains 45 Science Data Set (SDS) layers that include 8 geolocation and 37 geophysical SDSs. For more information consult LAADS product description page at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/XAERDT_L2_AHI_H08 Or, Dark Target aerosol team Page at: https://darktarget.gsfc.nasa.gov/

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    LAADS Short Name: XAERDT_L2_AHI_H08 Version ID: 1 Unique ID: C2859255251-LAADS

  • Climatology for NOAA Coral Reef Watch (CRW) Daily Global 5km Satellite Coral Bleaching Heat Stress Monitoring Product Suite Version 3.1 for 1985-01-01 to 2012-12-31 (NCEI Accession 0185742)

    https://cmr.earthdata.nasa.gov/search/concepts/C2089379091-NOAA_NCEI.xml
    Description:

    This package contains a set of 12 monthly mean (MM) climatologies, one for each calendar month, and the maximum monthly mean (MMM) climatology. Each climatology has global coverage at 0.05-degree (5km) spatial resolution. The climatologies were derived from NOAA Coral Reef Watch's (CRW) CoralTemp Version 1.0 product and are based on the 1985-2012 time period of the CoralTemp data. They are used in deriving CRW's Daily Global 5km Satellite Coral Bleaching Heat Stress Monitoring Product Suite Version 3.1. MMs are used to derive the SST Anomaly product, and the MMM is used to derive CRW's Coral Bleaching HotSpot, Degree Heating Week, and Bleaching Alert Area products.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    NOAA_NCEI Short Name: gov.noaa.nodc:0185742 Version ID: Not Applicable Unique ID: C2089379091-NOAA_NCEI

  • Fire Particulate Emissions from Combined VIIRS and AHI Data for Indonesia, 2015-2020

    https://cmr.earthdata.nasa.gov/search/concepts/C2600303267-ORNL_CLOUD.xml
    Description:

    This dataset provides 10-minute fire emissions within 0.1-degree regularly spaced intervals across Indonesia from July 2015 to December 2020. The dataset was produced with a top-down approach based on fire radiative energy (FRE) and smoke aerosol emission coefficients (Ce) derived from multiple new-generation satellite observations. Specifically, the Ce values of peatland, tropical forest, cropland, or savanna and grassland were derived from fire radiative power (FRP) and emission rates of smoke aerosols based on Visible Infrared Imaging Radiometer Suite (VIIRS) active fire and aerosol products. FRE for each 0.1-degree interval was calculated from the diurnal FRP cycle that was reconstructed by fusing cloud-corrected FRP retrievals from the high temporal-resolution (10 mins) Himawari-8 Advanced Himawari Imager (AHI) with those from high spatial-resolution (375 m) VIIRS. This new dataset was named the Fused AHI-VIIRS based fire Emissions (FAVE). Fire emissions data are provided in comma-separated values (CSV) format with one file per month from July 2015 to December 2020. Each file includes variables of fire observation time, fire geographic location, classification, fire radiative energy, various fire emissions and related standard deviations.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -11 89 10.1 153

    ORNL_CLOUD Short Name: Fire_Emissions_Indonesia_2118 Version ID: 1 Unique ID: C2600303267-ORNL_CLOUD

  • GEO-LEO Merged Deep Blue Aerosol 0.25x0.25 degree Gridded L2

    https://cmr.earthdata.nasa.gov/search/concepts/C3348093425-LAADS.xml
    Description:

    The GEO-LEO Merged Deep Blue Aerosol 0.25x0.25 degree Gridded L2 product, short-name AERDB_L2G_GEOLEO_Merged contains gridded Aerosol Optical Thickness (AOT) at 550 nm reference wavelength, derived from seven merged GEO-LEO AOT layers (G16-ABI, G17-ABI, H08-AHI, SNPP-VIIRS, NOAA20-VIIRS, Terra MODIS and Aqua MODIS) and from each of the individual (three GEO and four LEO) instrument sources. Each L2G aggregated datafile is spatially comprised of a 0.25˚ x 0.25˚ horizontal grid that exists for every 30 minutes. This represents a 30-minute Deep Blue best-estimate AOT from each of the seven sources besides an error-weighted merged AOT layer. This first release of these products spans from May 2019 through April 2020 with a potential to generate additional temporal coverage in the future. The Level-2G (L2G) Geostationary Earth Orbit (GEO)-Low-Earth Orbit (LEO) Merged Deep Blue Aerosol 0.25 x 0.25-degree Gridded dataset is part of a 12-product suite produced by an Earth Science Research from Operational Geostationary Satellite Systems (ESROGSS)-funded project. The 12 products in this project include nine derived from three Geostationary Earth Observation (GEO) instruments and three from merged data from GEO and Low-Earth Orbit (LEO) instruments. The AERDB_L2G_GEOLEO_Merged product, in netCDF4 format, contains 16 GEO-LEO Merged Group Science Data Set (SDS) layers and 15 GEO and LEO SDSs. For more information consult LAADS product description page at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/AERDB_L2G_GEOLEO_Merged Or, Deep Blue aerosol project webpage at: https://earth.gsfc.nasa.gov/climate/data/deep-blue

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    LAADS Short Name: AERDB_L2G_GEOLEO_Merged Version ID: 1 Unique ID: C3348093425-LAADS

  • GEO-LEO Merged Deep Blue Aerosol Daily 1 x 1 degree Gridded L3

    https://cmr.earthdata.nasa.gov/search/concepts/C3348072630-LAADS.xml
    Description:

    The GEO-LEO Merged Deep Blue Aerosol Daily 1 x 1 degree Gridded L3 product, short-name AERDB_D3_GEOLEO_Merged contains gridded Aerosol Optical Thickness (AOT) at 550 nm reference wavelength that are composited from the L2G product (AERDB_L2G_GEOLEO_Merged) using best-estimate AOT values. Please note that while the individual standalone gridded data layer for each instrument is calculated as the arithmetic mean, the merged AOT layer is derived via an error-weighted average approach. The final retrievals used in the aggregation process are QA-filtered best-estimate values for cells that are measured on the day of interest. Further, at least three such retrievals are required to render the validity of a grid cell on any given day. Each L3 daily aggregated datafile is spatially comprised of a 1˚ x 1˚ horizontal grid that exists for every 30 minutes. This first release of these products spans from May 2019 through April 2020 with a potential to generate additional temporal coverage in the future. The Level-3 (L3) Geostationary Earth Orbit (GEO)-Low-Earth Orbit (LEO) Merged Deep Blue Aerosol Daily 1 x 1-degree Gridded dataset is part of a 12-product suite produced by an Earth Science Research from Operational Geostationary Satellite Systems (ESROGSS)-funded project. The 12 products in this project include nine derived from three Geostationary Earth Observation (GEO) instruments and three from merged data from GEO and Low-Earth Orbit (LEO) instruments. The AERDB_D3_GEOLEO_Merged product, in netCDF4 format, contains 16 GEO-LEO Merged Group Science Data Set (SDS) layers and 15 GEO and LEO SDSs. For more information consult LAADS product description page at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/AERDB_D3_GEOLEO_Merged Or, Deep Blue aerosol project webpage at: https://earth.gsfc.nasa.gov/climate/data/deep-blue

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    LAADS Short Name: AERDB_D3_GEOLEO_Merged Version ID: 1 Unique ID: C3348072630-LAADS

  • GEO-LEO Merged Deep Blue Aerosol Monthly 1 x 1 degree Gridded L3

    https://cmr.earthdata.nasa.gov/search/concepts/C3348069018-LAADS.xml
    Description:

    The GEO-LEO Merged Deep Blue Aerosol Monthly 1 x 1 degree Gridded L3 product, short-name AERDB_M3_GEOLEO_Merged contains gridded Aerosol Optical Thickness (AOT) at 550 nm reference wavelength that are composited from the L3 daily product (AERDB_D3_GEOLEO_Merged). Please note that while the individual standalone gridded data layer for each instrument is calculated as the arithmetic mean, the merged AOT layer is derived via an error-weighted average approach. The final retrievals used in the aggregation process are QA-filtered best-estimate values for cells that are measured on the day of interest. Further, at least three such retrievals are required to render the validity of a grid cell on any given day. Each L3 daily aggregated datafile is spatially comprised of a 1˚ x 1˚ horizontal grid that exists for every 30 minutes. This first release of these products spans from May 2019 through April 2020 with a potential to generate additional temporal coverage in the future. The Level-3 (L3) Geostationary Earth Orbit (GEO)-Low-Earth Orbit (LEO) Merged Deep Blue Aerosol Daily 1 x 1-degree Gridded dataset is part of a 12-product suite produced by an Earth Science Research from Operational Geostationary Satellite Systems (ESROGSS)-funded project. The 12 products in this project include nine derived from three Geostationary Earth Observation (GEO) instruments and three from merged data from GEO and Low-Earth Orbit (LEO) instruments. The AERDB_M3_GEOLEO_Merged product, in netCDF4 format, contains 16 GEO-LEO Merged Group Science Data Set (SDS) layers and 15 GEO and LEO SDS layers. For more information consult LAADS product description page at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/AERDB_M3_GEOLEO_Merged Or, Deep Blue aerosol project webpage at: https://earth.gsfc.nasa.gov/climate/data/deep-blue

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -90 -180 90 180

    LAADS Short Name: AERDB_M3_GEOLEO_Merged Version ID: 1 Unique ID: C3348069018-LAADS

  • GHRSST NOAA/STAR Himawari-08 AHI L2P Pacific Ocean Region SST v2.70 dataset (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C2213637913-GHRSSTCWIC.xml
    Description:

    Himawari-8 (H08) was launched on 7 October 2014 into its nominal position at 140.7-deg E, and declared operational on 7 July 2015. The Advanced Himawari Imager (AHI; largely identical to GOES-R/ABI) is a 16 channel sensor, of which five (3.9, 8.4, 10.3, 11.2, and 12.3 um) are suitable for SST. Accurate sensor calibration, image navigation and (co)registration, high spectral fidelity, and sophisticated pre-processing (geo-rectification, radiance equalization, and mapping) offer vastly enhanced capabilities for SST retrievals, over the heritage GOES-I/P and MTSAT-2 Imagers. From altitude 35,800km, H08/AHI maps SST in a Full Disk (FD) area from 80E-160W and 60S-60N, with spatial resolution 2km at nadir to 15km at view zenith angle 67-deg, with a 10-min temporal sampling. The AHI L2P (swath) SST product is derived at the native sensor resolution using NOAA's Advanced Clear-Sky Processor for Ocean (ACSPO) system. ACSPO processes every 10-min FD data, identifies good quality ocean pixels (Petrenko et al., 2010) and derives SST using the four-band (8.4, 10.3, 11.2 and 12.3um) Non-Linear SST (NLSST) regression algorithm (Petrenko et al., 2014), trained against in situ SSTs from drifting and tropical mooring buoys in the NOAA iQuam system (Xu and Ignatov, 2014). The 10-min data are subsequently collated in time, to produce 1-hr L2P product, with improved coverage, and reduced cloud leakages and image noise. The collated L2P reports SSTs and brightness temperatures (BTs) in clear-sky water pixels (defined as ocean, sea, lake or river), and fill values elsewhere. All pixels with valid SSTs are recommended for use. ACSPO files also include sun-sensor geometry, l2p_flags (day/night, land, ice, twilight, and glint flags), and NCEP wind speed. The L2P is reported in NetCDF4 GHRSST Data Specification version 2 (GDS2) format, 24 granules per day, with a total data volume 0.6GB/day. Pixel earth locations are not reported in the granules, as they remain unchanged from granule to granule. Those can be obtained using a flat lat/lon file or a Python script available at https://podaac-tools.jpl.nasa.gov/drive/files/allData/ghrsst/data/GDS2/L2P/H08/STAR/nav. Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel (Petrenko et al., 2016). The H08 AHI SSTs and BTs are continuously validated against in situ data in SQUAM (Dash et al, 2010), and RTM simulation in MICROS (Liang and Ignatov, 2011). A reduced size (0.2GB/day), 0.02-deg equal-angle gridded ACSPO L3C product is also available.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -59 80 59 -160

    GHRSSTCWIC Short Name: gov.noaa.nodc:GHRSST-AHI_H08-STAR-L2P Version ID: 2.70 Unique ID: C2213637913-GHRSSTCWIC

  • GHRSST NOAA/STAR Himawari-08 AHI L2P Pacific Ocean Region SST v2.70 dataset in GDS2

    https://cmr.earthdata.nasa.gov/search/concepts/C2036877480-POCLOUD.xml
    Description:

    Himawari-8 (H08) was launched on 7 October 2014 into its nominal position at 140.7-deg E, and declared operational on 7 July 2015. The Advanced Himawari Imager (AHI; largely identical to GOES-R/ABI) is a 16 channel sensor, of which five (3.9, 8.4, 10.3, 11.2, and 12.3 um) are suitable for SST. Accurate sensor calibration, image navigation and (co)registration, high spectral fidelity, and sophisticated pre-processing (geo-rectification, radiance equalization, and mapping) offer vastly enhanced capabilities for SST retrievals, over the heritage GOES-I/P and MTSAT-2 Imagers. From altitude 35,800km, H08/AHI maps SST in a Full Disk (FD) area from 80E-160W and 60S-60N, with spatial resolution 2km at nadir to 15km at view zenith angle 67-deg, with a 10-min temporal sampling. The AHI L2P (swath) SST product is derived at the native sensor resolution using NOAA's Advanced Clear-Sky Processor for Ocean (ACSPO) system. ACSPO processes every 10-min FD data, identifies good quality ocean pixels (Petrenko et al., 2010) and derives SST using the four-band (8.4, 10.3, 11.2 and 12.3um) Non-Linear SST (NLSST) regression algorithm (Petrenko et al., 2014), trained against in situ SSTs from drifting and tropical mooring buoys in the NOAA iQuam system (Xu and Ignatov, 2014). The 10-min data are subsequently collated in time, to produce 1-hr L2P product, with improved coverage, and reduced cloud leakages and image noise. The collated L2P reports SSTs and brightness temperatures (BTs) in clear-sky water pixels (defined as ocean, sea, lake or river), and fill values elsewhere. All pixels with valid SSTs are recommended for use. ACSPO files also include sun-sensor geometry, l2p_flags (day/night, land, ice, twilight, and glint flags), and NCEP wind speed. The L2P is reported in NetCDF4 GHRSST Data Specification version 2 (GDS2) format, 24 granules per day, with a total data volume 0.6GB/day. Pixel earth locations are not reported in the granules, as they remain unchanged from granule to granule. Those can be obtained using a flat lat/lon file or a Python script (see Documentation page). Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel (Petrenko et al., 2016). The H08 AHI SSTs and BTs are continuously validated against in situ data in SQUAM (Dash et al, 2010), and RTM simulation in MICROS (Liang and Ignatov, 2011). A reduced size (0.2GB/day), 0.02-deg equal-angle gridded ACSPO L3C product is available at https://podaac.jpl.nasa.gov/dataset/AHI_H08-STAR-L3C-v2.70.

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -59 80 59 -160

    POCLOUD Short Name: AHI_H08-STAR-L2P-v2.70 Version ID: 2.70 Unique ID: C2036877480-POCLOUD

  • GHRSST NOAA/STAR Himawari-08 AHI L3C Pacific Ocean Region SST v2.70 dataset in GDS2

    https://cmr.earthdata.nasa.gov/search/concepts/C2036877660-POCLOUD.xml
    Description:

    The ACSPO H08/AHI L3C (Level 3 Collated) product is a gridded version of the ACSPO H08/AHI L2P product available at https://podaac.jpl.nasa.gov/dataset/AHI_H08-STAR-L2P-v2.70. The L3C output files are 1hr granules in NetCDF4 format, compliant with the GHRSST Data Specification version 2 (GDS2). There are 24 granules available per 24hr interval, with a total data volume of 0.2GB/day. Valid SSTs are found over clear-sky oceans, sea, lakes or rivers, with fill values reported elsewhere. The following layers are reported: SST, ACSPO clear-sky mask (ACSM; provided in each grid as part of l2p_flags, which also includes day/night, land, ice, twilight, and glint flags), NCEP wind speed and ACSPO SST minus reference (Canadian Met Centre 0.1deg L4 SST; available at https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0 ). All valid SSTs in L3C are recommended for users, although data over internal waters may not have enough in situ data to be adequately validated. Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (bias and standard deviation) are reported in each pixel with valid SST (Petrenko et al., 2016). The ACSPO VIIRS L3U product is monitored and validated against iQuam in situ data (Xu and Ignatov, 2014) in SQUAM (Dash et al, 2010).

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -59 80 59 -160

    POCLOUD Short Name: AHI_H08-STAR-L3C-v2.70 Version ID: 2.70 Unique ID: C2036877660-POCLOUD

  • GHRSST NOAA/STAR Himawari-08 AHI L3C Pacific Ocean Region SST v2.70 dataset (GDS version 2)

    https://cmr.earthdata.nasa.gov/search/concepts/C2213638013-GHRSSTCWIC.xml
    Description:

    The ACSPO H08/AHI L3C (Level 3 Collated) product is a gridded version of the ACSPO H08/AHI L2P product. The L3C output files are 1hr granules in NetCDF4 format, compliant with the GHRSST Data Specification version 2 (GDS2). There are 24 granules available per 24hr interval, with a total data volume of 0.2GB/day. Valid SSTs are found over clear-sky oceans, sea, lakes or rivers, with fill values reported elsewhere. The following layers are reported: SST, ACSPO clear-sky mask (ACSM; provided in each grid as part of l2p_flags, which also includes day/night, land, ice, twilight, and glint flags), NCEP wind speed and ACSPO SST minus reference (Canadian Met Centre 0.1deg L4 SST). All valid SSTs in L3C are recommended for users, although data over internal waters may not have enough in situ data to be adequately validated. Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (bias and standard deviation) are reported in each pixel with valid SST (Petrenko et al., 2016). The ACSPO VIIRS L3U product is monitored and validated against iQuam in situ data (Xu and Ignatov, 2014) in SQUAM (Dash et al, 2010).

    Links: Temporal Extent: Spatial Extent:
    Minimum Bounding Rectangle: -59 80 59 -160

    GHRSSTCWIC Short Name: gov.noaa.nodc:GHRSST-AHI_H08-STAR-L3C Version ID: 2.70 Unique ID: C2213638013-GHRSSTCWIC